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Abstract

The method of selecting monitor nodes has a direct impact on the accuracy of the infection source
localization, and infection source localization methods that use monitor observation tend to focus
on the source localization itself and ignore the selection of monitor nodes. The biggest problem of
using graph centrality to select monitor nodes is that the distribution of the selected monitor nodes
may be too concentrated, thus affecting the effect of infection source localization. In order to solve
the problem of centralized distribution of monitor nodes, a hierarchical method of selecting monitor
nodes using K-shell is proposed. To further improve the effectiveness of the selection, the overlap-
ping range of neighbors is introduced into the selection method. Through simulation experiments
on various networks of various sizes, the monitor node selection method can effectively improve the
accuracy of infection source localization.
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1 Introduction

With the rapid development of the Internet, online social networking applications, such as Twitter, Weibo,
WeChat, Reddit, forums, etc., affect everyone’s life to a greater or lesser extent. Online social applica-
tions make people closer to each other, and these close ties make up the well-known social network.
According to a social network analysis study[l1], in 2020, the global social penetration rate reached 49
percent, about 4.14 bn active global social media population worldwide. While this close connection
facilitates people’s lives, it also facilitates the spread of negative information. Today, with the ubiquity of
cell phones, everyone from the elderly to children is a node in a social network, and everyone receives a
large amount of unverified information every day [13}[16]. These large amounts of information are likely
to be mixed with things like misinformation and rumors, and the consequences of spreading them widely
are often serious.

Problems not only in social networks, but also in the spread of COVID-19, computer viruses transmitted
on the Internet, contaminants in the water network, high-voltage surges in the power grid, and failures
in sensor networks, all require the localization of infection and failure sources in the corresponding net-
works [5} 7, [12]. These “’faulty networks” are collectively called infection networks and “faulty sources”
are collectively called infection sources, so this series of problems are finally abstracted as the problem
of infection source localization in infection networks. Therefore, infection source localization has a wide
range of applications in all walks of life, and rapid and accurate identification of infection sources is of
considerable importance.
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In the initial study[11], the infection source localization method was designed to be used in a tree-like
network in the form of a complete observation. As the research progressed, the observation methods for
infection source localization became more diverse, with snapshot observation being used for localization.
In order to find the source of infection more accurately and quickly, localization methods using monitor
to record the time of infection are becoming popular.
At present, most of the infection source localization methods using monitor observations focus on the
localization itself and ignore the selection of monitor nodes. The distribution of monitor nodes in the
graph is related to the level of access to the transmitted information, and the source localization method
relies on the information obtained from the monitor nodes, so the method of selecting monitor nodes
directly affects the accuracy of source localization. The source localization method using monitor obser-
vation often adopts the traditional graph centrality such as random[ 10, [18} 13} (9. 8], degree[/10} (18} (19} 8],
and betweenness[18} 19, [14, [8]] in selecting monitor nodes. The biggest problem with using centrality
for selection is that the distribution of the selected monitor nodes may be too concentrated. As shown
in Figure [T} the degree centrality is used to select three monitor nodes on the Karate network, with the
blue nodes being the monitor nodes. It can be seen that the nodes 733" and 34" are large degree values
and meet the selection criteria, but these large nodes are often directly connected to each other, which
results in a non-centralized distribution of the monitor nodes. There will be a large overlap in the range
of information received by the monitor nodes.

In this paper, we propose K-Coverage, a monitor node selection method based on K-shell, to address
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Figure 1: Select three monitor nodes in the Karate network.



K-Coverage: A Monitor Node Selection Algorithm Y. Zhang and J. Zhang

the unbalanced distribution of monitoring nodes in the graph, and the experiments show that this method
has a higher localization accuracy than the traditional centrality selection method.

2 Related Works

Current methods for locating the source of infection are mainly classified according to the method of
observation of the infection. Observation methods refer to the methods used to capture the changing
processes of the infection network over time. Current studies fall into three main categories: com-
plete observation, snapshot observation, and monitor observation[4]. Shah and Zaman[/11]] were the first
to propose the concept of rumor localization, and they studied it in a tree-like network, using the SI
(Susceptible-Infected) model for information diffusion. They proposed the Rumor Centrality approach,
which the number of propagation paths of a node is defined as the rumor centrality, and the larger the
rumor centrality, the more likely the node is to be the source of infection. Compared with rumor cen-
trality search for an infection source, assigning a group of nodes as the infection source greatly reduces
the probability of missing the real infection source and reduces the scale of node search. Dong et al.[2]
then proposed a Local Rumor Center approach, which designates a set of nodes as the source of in-
fection. Zhu and Ying[20] proposed a method using Jordan Centrality in a tree-like network and SIR
(Susceptible-Infected-Recovered) model. The Jordan centrality of a node is the maximum shortest dis-
tance from infected nodes and recovered nodes, and the greater the Jordan centrality, the more likely it is
to be an infected source.

In this paper, we study the source localization method using monitor observation, also known as sensor
observation. In this context, monitor refers to the selection of a certain number of nodes in a network
using some sort of selection method, which is used to record the time at which they receive information.
This is called static monitor selection if the nodes are selected before the infection starts, or dynamic
selection if the nodes are selected during the infection. The difference between a monitor node and a
normal infected node is that the monitor node records its own infection time.

Pinto et al.[10] proposed a single source localization method using Gaussian estimation, which was sub-
sequently improved by Paluch et al.[9] and Shelke et al.[14]. Shi et al.[15] proposed a single source
localization method using Markov random fields, and the experimental results demonstrate that this
method is more effective than the Jordan Centrality, DMP, using snapshot observation. Wang[18]| pro-
posed a more general approach to locate by calculating the Spearman correlation coefficient between the
distance from the node to the monitors and the time of monitors receiving the information. According to
the general law of information diffusion, ideally the distance and time of information diffusion should be
directly proportional, so that the closer the Spearman correlation coefficient of a node is to 1, the more
likely it is to be the source of infection.

Spinelli et al.[17] proposed a general framework for locateing the source of infection using dynamic
monitor node placement. The framework is divided into three steps: the first step is to select a small
number of nodes in the network to obtain whether the infection has started. These nodes are called
static monitor; the second step is to select some nodes in the uninfected position of the network by some
method after the static monitor nodes get the infection start, which are called dynamic monitor; the third
step is to use the information collected by the monitor nodes to make source localization. Localization
can be done after the infection has stopped (Offline) or the infection is in progress (Online).

The source localization method used in this paper to evaluate the performance of monitor node selection
is based on the Spearman correlation coefficient proposed by Wang.
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3 Method

In this paper, we use K-shell to layer the network. By selecting monitor nodes in each layer of the
network, the monitor nodes are evenly distributed in the graph, which not only avoids the problem of
over-concentration of the selected monitor nodes, but also ensures the coverage of the monitor nodes.
The rule in each layer is that the node in the current layer covers the node in the outer layer. If a node in
the & layer is n, then the score S, of node  is defined as.

Sn:|nneiﬁ(N1UNQU...UN(k,l))\(MUMneiH (D)

where n,,; is the neighbors of node n, N; is all nodes with K-shell value k = i, M is the already selected
monitor nodes, and M,,; is the neighbors of the already selected monitor nodes. M,,; is actually the
coverage area of the already selected monitor nodes, so the further selected monitor node should avoid
these already covered nodes.

This method only takes into account the coverage of outer layer nodes, but ignores the coverage of inner
layer nodes. In reality, the network is so diverse that it cannot be excluded that there may be cases where
k = inodes are too few to select one node. Although these less than one case will be accumulated to
the next layer for selection, but this layer between the formation of a blind area. Therefore, the overlap
range of neighbors is taken into account when selecting monitor nodes. The smaller the coverage area
between the neighbors of the selected node and the neighbors of the monitor node, the higher the ranking
of the node as a potential monitor node candidate. The perfected score S, of the node n is defined as.

Sy = |nnei N M, | 2)

The following is a simple demonstration of the implementation of the K-Coverage algorithm using
the Karate network, as the K-shell layer is not well-displayed in the graph, we use the node’s degree to
roughly distinguish the K-shell value, the higher the degree, the larger the representation of the node in
the graph. According to the rule, the outermost node, k = 1, is not selected for monitor. The interesting
thing is that there is only one node with k = 1, and none of the k = 1 nodes is directly connected to it,
so it can only be selected according to the degree value. As shown in Figure 2(a)] node 710 is selected
as the monitor node, the remaining ¥ = 2 nodes are selected as the covered nodes for the next round. As
shown in Figure node ’6” covers node 17 of k = 2, and its degree value is higher, so node 76"
is selected. The remaining k& = 3 nodes are the covered nodes for the next round of selection. Finally,
k = 4 nodes are selected, as shown in Figure Although nodes ”34” and ”1” cover more outer
nodes, they also include the neighbors of nodes ”10” and 6", so they can not be selected as monitor
nodes. Finally, nodes 33" and 72" are selected, so the algorithm ends.

4 Experiments

4.1 Datasets and Evaluation Metrics

The Spearman correlation coefficient based infection source localization method[[18]] is used to evaluate
the validity of the monitor node selection methods. The source localization method is based on calculat-
ing the Spearman correlation coefficient between the distance from the infected node to the monitor node
and the time at which the monitor node received the information; the closer the correlation coefficient is
to 1, the more likely it is to be an infected source. The Spearman correlation coefficient p; for node k is
defined as follows:
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Algorithm 1: K-Coverage

Input: graph, rate
Output: picked

coreness = coreness(graph) // K-shell value asc order
last_not_picked = coreness[1] // outermost layer no monitor node selected
rate = coreness * rate / coreness[-1] // calculate the picked number of each layer

for ¢ in coreness[-1]
¢ = degree(graph, c) // desc order
count = length(c) * rate

for node in c

adjs = are_adjacent(graph, node, last_not_picked)

scores[node] = length(adjs)

last_not_picked = last_not_picked[-adj] // remove nodes that have been covered
end for
scores = order(scores, desc)

for i in count
for pick in picked
adj = are_adjacent(graph, scores[i], pick) // make sure it is not covered by the monitor nodes
if adj
break
end if
end for
if ladj
picked = scores][i]
end if
end for
last_not_picked = difference(c, picked)
end for
return picked

1

6 ok 2
P = 1— mZI(di — 1) 3)
where n is the number of monitor nodes, d is the distance from node k to the monitor node, and ¢ is the
time when the monitor node receives information.
Classical graph centrality metrics: degree centrality, betweenness centrality, and random are used for the
comparison of monitor node selections. The SI model was used for the information diffusion model.
We performed simulations on 9 real networks, and each network has been simulated for 100 times:
Zachary’s Karate Club network, the network of characters in Les Miserables Lesmis, the RFID sensor
network, the network of jazz musicians Jazz,, the network of U.S. airports in October 2010 USairports.
immunoglobulin interaction network Immuno, Yeast interaction network, Facebook friend network, and
US power grid USPG, the details of the datasets are shown in Table
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Algorithm 2: K-Coverage-Nei

Input: graph, rate
Output: picked

coreness = coreness(graph) // K-shell value asc order
last_not_picked = coreness[1] // outermost layer no monitor node selected
rate = coreness * rate / coreness[-1] // calculate the picked number of each layer

for ¢ in coreness[-1]
¢ = degree(graph, c) // desc order
count = length(c) * rate

for pick in picked // get picked neighbors
picked_neighbors = neighbors(graph, pick)
end for
picked_neighbors = difference(unique(picked_neighbors), picked)

for node in ¢ // calculate the number of the intersection of neighbors
scores[node] = length(intersect(neighbors(graph, node), picked_neighbors))
end for

scores = order(scores, asc)
picked = scores[1: count]
end for
return picked
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Figure 2: Using K-Coverage to select monitor nodes in Karate network.

In order to quantify the effectiveness of monitor node selection, the area under the receiver operating
characteristic curve (ROC), or AUC, is used as the evaluation metric to evaluate the accuracy of the
source localization algorithm, and indirectly to evaluate the effectiveness of the monitor node selection
method by the accuracy of the source localization algorithm. AUC value is calculated by true positive rate
(TPR) and false positive rate (FPR). In order to calculate AUC value, Spearman correlation coefficient p
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Table 1: Simulation experiment datasets.

Dataset Node Edge Clustering Coefficient Average Degree
Karate 34 78 0.2557 4.5882
Lesmis 77 254 0.4989 6.5974
RFID 75 32424 0.588 30.3733
Jazz 198 2742 0.5203 27.697
USairports 745 4618 0.3385 12.3973
Immuno 1316 6300 0.4851 9.5745
Yeast 2617 11855 0.4687 9.8467
Facebook 4039 88234 0.5192 43.691
USPG 4941 6594 0.1032 2.6691
should be ranked in descending order.
TP
TPR = — “

where T P is the number of real sources in p and k is the number of real sources, and since this algorithm
is a single source localization algorithm, 7P can only be 0 or 1 and & is 1.

FPR = (5)

n—k
where F'P is the number of false positives in p, which is the number of error source nodes, and # is

the number of Spearman correlation coefficient p. The horizontal coordinate of the receiver operating
characteristic curve is F PR, the vertical coordinate is 7 PR, and AUC is the area under the curve.

4.2 Results

The AUC of the experimental results is the average AUC value of 100 simulations.

Figure 3| demonstrates the accuracy of using Spearman correlation coefficients for localization with
10% of the monitor nodes selected. Both K-Coverage and K-Coverage-Nei show a large improvement in
accuracy when compared to the centrality selection methods. It can also be found that the effectiveness
of using centrality to select monitor nodes is closely related to the network structure, such as in Lesmis
and RFID networks, the use of betweenness centrality to select monitor nodes will have good results. It
is also found that the effectiveness of K-Coverage and K-Coverage-Nei has a strong relationship with the
average degree value of the network, the higher the average degree value of the network, the better the
effectiveness of using K-Coverage and K-Coverage-Nei for monitor node selection.

In order to investigate the relationship between the select proportion of the monitor nodes and the source
localization accuracy, we set three select proportion of 1%, 5%, and 10%, respectively. Figure [3| shows
the relationship between the select proportion and the source localization accuracy of different monitor
nodes. It can be seen that with the increase of the select proportion, the accuracy of source localization is
also constantly improving. At the same time, in the case where the select proportion is small, such as 1%,
both K-Coverage and K-Coverage-Nei achieve good results, much better than the method using centrality
selected monitor nodes. There is also an interesting experimental phenomenon, a higher proportion of
monitor nodes, random selection of monitor nodes on individual networks also achieved good results.
This is because the random method used by us is not really random, but a kind of average sampling,
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Figure 3: Influence of different selection methods on localization accuracy.

so that the selected monitor nodes are naturally evenly distributed in the whole network. Of course, in
the case of a small percentage of selections, the results are not as good as using the centrality selection
method.

Finally, Table (2) and Figure (5) summarize the experimental results. Except for individual networks,
K-Coverage-Nei is better than K-Coverage.
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Figure 4: Influence of different select proportion on localization accuracy.

5 Conclusion

With the application of infection source localization problems in various industries, it is becoming more
and more important to improve the accuracy of localization. An infection source localization method
based on monitor observation has the advantage of being more accurate and faster than a probability-
based method. In order to fully amplify this advantage, the placement of monitor nodes also needs to
be studied in depth. In this paper, in order to solve the unevenness of the monitor nodes selected by the
traditional graph centrality, the K-Coverage method is used to select the monitor nodes hierarchically,
and the K-coverage method is proposed to distribute the monitor nodes in each region of the graph.
At the same time, in order to solve the blind spots between layers, the overlapping range of neighbors
is considered, and the K-Coverage-Nei method is proposed to further improve the effectiveness of K-
Coverage.
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