Changes of Cyber Hacking Attack Aspect of North Korea Cyber-Attack Groups Applying MITRE ATT&CK

GwangHyun Ahn¹, Seon-a Lee², and Won-hyung Park^{2*} ¹Department of Computer Engineering, Sejong University, Seoul, South Korea rhkdgus8781@sju.ac.kr ²Department of Information Protection Engineering, Sangmyung University, Cheonan, South Korea sunnie39@naver.com, whpark@smu.ac.kr

Abstract

In the process of preparing cyber security and space security enhancement plans worldwide, cyber attacks such as North Korean cyber attacker groups Thallium, Kimsuky, Geumseong 121, and Lazarus have developed into advanced levels and continue to threaten cyber security and space security. The North Korean cyber attack team has been strengthening cyber attacks by using social engineering techniques through political and social issues for unspecified numbers of people using detailed attack stages, procedures, technologies and tools using cyber kill chain technology, starting with APT attacks in the past. In this paper, we use the enemy cyber threat analysis data to analyze the correlation between North Korean cyber attack groups by applying MITRE's ATT&CK, and estimate the source of attack origin such as open vulnerability, malicious code information, attack group cyber attacks by North Korean cyber attack groups based on ATT&CK.

Keywords: MITRE ATT&CK, Kimsuky, Thallium, Lazarus, Geumseong 121, APT, Cyber KillChain, North Korea

1 Introduction

As measures are being prepared to strengthen cybersecurity and space security policies worldwide, it is increasingly necessary to analyze and respond to attack groups occurring in cyberspace. The level of North Korea's cyber attack groups, which maximizes damage by conducting cyber attacks on major countries, could threaten pan-national security. Specifically, based on the time it penetrates the network for hacking, North Korea is ranked second in the world after Russia [7]. In addition, attack techniques and step-by-step procedures are being developed to a high-tech level, and cyber attacks are being strengthened by using detailed attack procedures, techniques, and tools by exploiting social engineering techniques to target unspecified people using political or social issues [11]. Recently, as vaccines that can prevent COVID-19 became a global issue, cyber attack groups quickly changed their attack methods. Numerous hackers, including the Lazarus attack group, use social engineering techniques such as spear phishing and camouflage tactics to steal COVID-19 and vaccines, depending on the actions required by an unspecified majority, such as malware, watering holes, phishing, and pharming. It is classified as a cyberthreat using social engineering techniques such as web Parameter Tampering attack. In addition, most North Korean cyber attack groups continued to attempt attacks using spear phishing, malicious links, and impersonation [4, 5, 12–15]. North Korea's cyber-attacks groups has recently infiltrated the target system with social engineered attack techniques that exploited social issues including corona, and is implementing strategies that utilize APT attacks and cyberkillchain techniques [4,5,12–15].

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 7, Article No. 7 (October 5, 2021) DOI:10.22667/ReBiCTE.2021.10.05.007

^{*}Corresponding author: Department of Information Security Engineering, Sangmyung University, 31066 South Korea, Tel: +82-(0)41-550-5301

2 Related Research

2.1 MITRE ATT&CK Framework

North Korea's cyber-attack method has evolved from an attack method using viruses and hacking to a DDoS attack and an advanced persistent threat attack method [16]. The North Korean cyber attacker group continues to operate through spear phishing, camouflage tactics, and supply chain attacks that use social engineering techniques to create political and social chaos. As shown in Table 1, strategies and patterns of major North Korean hacking groups were analyzed through attack techniques and cases based on ATT&CK(adversarial Tactics, Techniques and Common Knowledge). The strategy and pattern analysis of North Korea's major hacking groups allowed prediction of North Korea's cyber operations, tactics, technologies and procedures, and applied to the analysis of changes in cyber attacks by Lazarus, Kimsuky, Thallium and Geumseong 121.

Division	Tactics, Strategy	Description	
TA0043	Reconnaissance	Gather information they can use	
1A00 4 5	Reconnaissance	to plan future operations	
TA0042	Pasouraa Davalonmant	Establish resources they can use	
IA0042	Resource Development	to support operations	
TA0001	Initial Access	Get into your network	
TA0002	Execution	Run malicious code	
TA0003	Persistence	Maintain their foothold	
TA0004	Privilege Escalation	Higher-level permissions	
TA0005	Defense Evasion	Avoid being detected	
TA0006	Credential Access	Steal account names and password	
TA0007	Discovery	Figure out your environment	
TA0008	Lateral Movement	Move through your environment	
TA0009	Collection	Gather data of interest to their goal	
TA0010	Exfiltration	Steal data	
TA0011	C&C	Communicate with compromised systems to control them	
TA0040	Impact	Manipulate, interrupt, or destroy your systems and data	

 Table 1. Attacker tactics and strategy pattern analysis based on ATT&CK

2.2 Cyber threat trends by major North Korean hacking groups

Analyzing the recent cyber operation activities of North Korean hacking groups using open source information (OSINT), they are classified into the major North Korean hacker organizations Lazarus, Kimsuky, Thallium, and Geumseong121, and the most active attack groups are Lazarus and Kimsuky. Lazarus attempted hacking into banks and film companies, and had activities to pay Bitcoin through ransomware attacks [8]. Geumseong 121 confirmed a slowdown in activity through an invasion indicator of cyberactivity [4, 5, 12–15] and it is Talium believed to be a group renamed by expanding the range and target of attacks in the Kimsuky organization [6]. In order to analyze the process of change in attack patterns of major North Korean hacking groups, it is first necessary to understand the affiliation, characteristics, targets, techniques, and types of the hacker groups. The status of North Korean military cyber unit organization is shown in Fig. 1., North Korea's Workers' Party's cyber organization is shown in Fig. 2 [1,10].

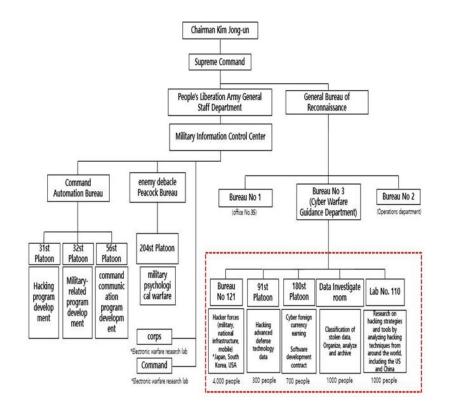


Figure 1: Status of North Korean military cyber force organization

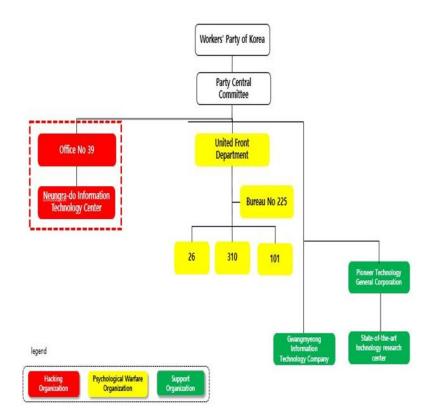


Figure 2: Status of North Korea's Workers' Party Cyber Organization

Table 2 shows the results of analyzing the main attack targets, types, and attack techniques of major North Korean hacking groups.

Groups	Targets	Туре	Technique
Lazerus	COVID-19, Finance, Government, Technology, Bitcoin, North Korea	Hacking, Steal Info Spy, Obstruction and destruction, Monetary, gain	Spear Phishing, Ransomware, Cryptocurrency, Malware, DDos Social engineering
Kimsuky (Thallium)	COVID-19, Politics, Diplomacy, Defense, Cryptocurrency, North Korea	Hacking, Steal Info Spy	Spear Phishing, Phishing, Social Engineering, Malware, APT
Geumseong121 Diplomacy, Unification, Security, North Korean defectors, North Korean human rights activist		Hacking, Steal Info Spy	Spear Phishing, Malicious, Hacking, App, Social Engineering

Table 2. Analysis result of attack targets, types, and attack techniques of major North Korean hacker organizations

3 Analysis of Hacker Organization Activities in North Korea and Method of Collecting Backtracking Information on Attack Origin

3.1 Implementation of analysis diagram of North Korean hacker organization attack origin traceback using Open Source Intelligence (OSINT)

Targeting Lazarus, Thallium, Kimsuky, and Geumseong 121, the major North Korean hacker organizations, using OSINT, VirusTotal, Malwares.com, and shodan.io were used to analyze the activities of major hacking groups and trace the origin of the attack using VBScript diagram was implemented to make it possible. The diagram using the implemented VBScript is shown in Fig. 3. Same as. Furthermore, the hacker organization identified 406 exploited C&C server addresses, including sanlorenzoyacht.com and longdevlab.com, and 77 IPs, including 120.138.8.26 (AS18229/India), 199.89.55.0/24 (NA27640/USA) [2, 3]. The list of exploited C&C servers and attack IPs and URLs is shown in Table 3.

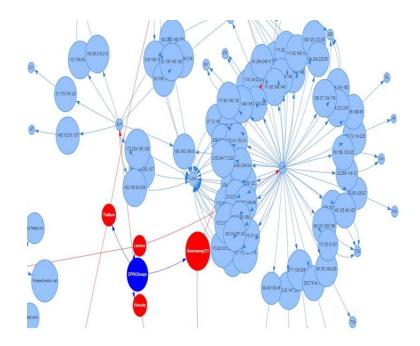


Figure 3: Diagram implementation of VBScript based North Korea cyber-attack activity analysis **Table 3.** Attack IP and URL identified by the abused C&C server

Division	IP	URL	Whois
Lazarus C&C	120.138.8.26 199.89.55.218 99.83.154.118 198.54.117.197 198.54.117.198 212.19.101.220 37.35.106.100 217.19.147.100 185.176.43.98	www.advamtimes.com crrmute.com dorusio.com sanlorenzoyacht.com beilksa.scienceontheweb.net	IN US US IT CH IT
Kimsuky C&C	27.0.236.139 23.152.0.232 209.99.64.76 216.239.38.21 107.178.246.49 54.197.173.238 185.176.43.98	hahee.co.kr forecareer.com org-help.com driver.cfg srtb.msn.com download.riseknite.life onlinewebshop.net	KR US US US US BG
Geumsong 121 C&C	183.111.174.80 116.125.112.241 216.189.157.89	m.ssbw.co.kr naver.pm alps.travelmountain.ml	KR KR US

185.176.43.98	yezu212.myartsonline.com	BG
185.176.43.104	quarez.atwebpages.com	BG
103.125.219.119	b.smtper.co	JP
202.111.173.67	kasse-v1.hdac-wallet.com	US
211.13.196.134	kasse.hdac-tech.com	US
185.176.43.98	tksRpdl.atwebpages.com	BG
	185.176.43.104 103.125.219.119 202.111.173.67 211.13.196.134	185.176.43.104quarez.atwebpages.com103.125.219.119b.smtper.co202.111.173.67kasse-v1.hdac-wallet.com211.13.196.134kasse.hdac-tech.com

Table 4 shows the CVE (Public Vulnerability List) results used by major hacking groups through the Shodan.io site among open source information.

Division	CVE ID	Vulnerability
	CVE-2019-1458	Windows OS Zero-day Attack
Logomus	CVE-2019-13720	Chrome Vulnerability Attack
Lazarus	CVE-2018-4878	Adobe Flash Player Vulnerability
	CVE-2018-20250	ACE Vulnerability
	CVE-2012-0158	WordPress(docx) Vulnerability
Kimsuky	CVE-2017-0199	MS Office Zero-day
	CVE-2017-11882	Ms Office Vulnerability
Goumsoong 121	CVE-2018-4878	Adobe Flash Player Vulnerability
Geumseong 121	CVE-2017-8291	MS Office Vulnerability

Table 4. List of public vulnerabilities exploited by major North Korean hacking groups

4 Changes in cyber hacking patterns of major North Korean hacking groups based on MITRE ATT&CK data

4.1 Changes in hacking patterns of North Korean cyber-attack groups

In the past, North Korea used a small number of hacking organizations to conduct DDoS attacks against the South Korean government, starting with hacking for self-promotion such as website paralysis and website defacement. Lazarus, a North Korean hacking organization, not only attacked the internal net-work of hacking film companies, but also leaked various documents as well as personal information of employees [9]. However, with the increasing number of fast-developing ICTs and scientific technologies, North Korea's cyber attacks technology are also gradually evolving to a state-of-art. Representative examples include computer network hacking of government agencies, finance, and broadcasting companies, infiltration and attack patterns of closed networks, development and attack of ransomware, distribution of ransomware using SMB ports, supply chain attacks, control of autonomous vehicles, drones, airplanes, and Cyber attack patterns that can cause enormous damage to people and property, such as threatening the safety of airspace such as unmanned aerial vehicles, are changing. Using MITRE ATT&CK, data on changes in hacking patterns (tactics, code, attack technology, etc.) of North Korea's cyber attack groups were identified and analyzed.

4.2 Analysis of changes in Lazarus group cyber attack pattern based on ATT&CK data

Table 5 shows the results by classifying and analyzing the Lazarus Group cyber attack pattern change data (tactics, codes, attack techniques, etc.) using MITER ATT&CK.

Division	Tactics	code	Attack Name	Explanation
				Keylogger KiloAlfa obtains user
	Defense		Access Token	tokens from interactive sessions to
1	Evasion	T1134002	Manipulation	execute itself with API call
	L'vasion		Wampulation	CreateProcessAsUser
				A under that user's context.
				Malware WhiskeyDelta-Two contains
2	Persistence	T1098	Account Manipulation	a function that attempts
				to rename the administrator's account.
				Malware IndiaIndia obtains
				and sends to its C2 server the title of
3	Discourse	T1010	Application Windows	the window for each running process.
5	Discovery	11010	Discovery	The KilaAlfa keylogger also reports
				the title of the window
				in the foreground.
	Persistence		Bootkit	Malware WhiskeyAlfa-
		T1542003		Three modifies sector 0 of
4				the Master Boot Record(MBR)
4				to ensure that the malware
				will persist even if a victim
				machine shuts down.
				Malware attempts to connect
				to Windows shares for lateral
	Credential	1	Brute Force	movement by using
5		T1110		a generated list of usernames,
	Access	Access	Attack	which center around
				permutations of the username
				Administrator, and weak passwords.
				Malware uses cmd.exe to execute
				commands on victims.
			Command and	A Destover-like variant used
6	Execution	T1059	Scripting	by Lazarus Group uses
			Interpreter	a batch file mechanism
				to delete its binaries
				from the system.
				Malware uses a list of
7	C&C	T1571	Non-Standard	ordered port numbers to choose
7	Cal	T1571	Port	a port for C2 traffic,
				creating port-protocol mismatches.

Table 5. Lazarus Cyber Attack Changing of Patterns Data Analysis Results

Division	Tactics	code	Attack Name	Explanation		
				Acquired infrastructure		
8	Resource	T1583	Acquire	related to their campaigns		
0	Development	11365	Infrastructure	to act as distribution points		
				and C2 channels.		
9	C&C	T1071	Application	Malware has conducted		
9	Cal	110/1	Layer Protocol	C2 over HTTP and HTTPS.		
				Malware RomeoDelta		
			Archive	archives specified directories		
10	Collection	T1560	Collected Data	in .zip format,		
			Collected Data	encrypts the .zip file,		
				and uploads it to its C2 server.		
				Malware attempts to		
			Boot or Logon	maintain persistence by		
11	Persistence	T1547	Autostart	saving itself in the Start		
			Execution	menu folder or by adding		
				a Registry Run key.		
			D (I	Malware sample adds		
12	Privilege Escalat	T1547	Boot or Logon	persistence on the system		
			Autostart	by creating a shortcut in		
			Execution	the user's Startup folder.		
	Persistence	Persistence T1543	Create or	Malware families install		
13			Modify System	themselves as new		
			Process	services on victims.		
	D=:==:1====	ilege T1543 lation	Create or	Malware families install		
14	Privilege		Modify System	themselves as new		
	Escalation		Process	services on victims.		
				Used a custom secure		
15	T	T1485	Data	delete function to		
15	Impact		Destruction	overwrite file contents		
				with data from heap memory.		
16		T1122	Data	Malware sample encodes		
16	C&C	T1132	Encoding	data with base64.		
	Л	Dagauraa	Resource		Davalar	Developed several custom
17		T1587	Develop Capabilities	malware for use in		
	Development		Capabilities	operations.		
				Malware IndiaIndia saves		
				information gathered about the victim		
				to a file that is uploaded		
				to one of its 10 C2 servers.		
10	Callesting	T1005	Data from	Lazarus Group malware RomeoDelta copies		
18	Collection	T1005	Local System	specified directories from the victim's machine,		
			-	then archives and encrypts the directories		
				before uploading to its C2 server.		
				Lazarus Group has used wevtutil		
				to export Window security event logs.		

Division	Tactics	code	Attack Name	Explanation
				Malware also uses
				a unique form of communication encryption
19	C&C	T1001	Data	known as FakeTLS that mimics TLS
19	Cal	11001	Obfuscation	but uses a different encryption method,
				evading SSL man-in-the-middle
				decryption attacks.
	Collection			Malware India saves information
		T1074		gathered about the victim
20			Data	to a file that is saved
20			Staged	in the %TEMP% directory,
				then compressed, encrypted,
				and uploaded to a C2 server.
				Replaced the background
21	Impost	Impact T1491	Defecement	wallpaper of systems with
21	Impact		Defacement	a threatening image after rendering the system
				unbootable with a Disk Structure Wipe.

Table 6 shows the results by classifying and analyzing the Kimsuky Group cyber attack pattern change data (tactics, codes, attack techniques, etc.) using MITER ATT&CK.

Tactics	code	Attack Name	Explanation	
			Used Google Chrome browser	
Dersistance	T1176	Browser Extensions	extensions to infect	
I CISIStellee	11170	DIOWSEI EXtensions	victims and to steal	
			passwords and cookies.	
Resource		Acquire Infrastructure :	Registered domains to spoof	
	T1583001	•	targeted organizations and trusted	
Development		Domain	third parties.	
		Application Layer	FTP to download additional	
C&C	T1071002	Protocol :	malware to the target machine.	
		FTP		
			e-mail to send exfiltrated data to	
C&C	T1071003		C2 servers.	
			02 301 0015.	
		Archive Collected	RC4 encryption before	
Collection	T1560003	Data : via	exfiltrated.	
		Custom Method	exinitated.	
		Boot or Logon	Placed scripts in the startup folder	
Persistence	Persistence T1547	Autostart		
		Execution	for persistence.	
	Persistence Resource Development C&C C&C Collection	PersistenceT1176Resource DevelopmentT1583001C&CT1071002C&CT1071003CollectionT1560003	PersistenceT1176Browser ExtensionsResource DevelopmentT1583001Acquire Infrastructure : DomainC&CT1071002Application Layer Protocol : FTPC&CT1071003Protocol : FTPC&CT1071003Protocol : MailCollectionT1560003Data : via Custom MethodPersistenceT1547Autostart	

 Table 6. Kimsuky Cyber Attack Changing of Patterns Data Analysis Results

Division	Tactics	code	Attack Name	Explanation
7	Execution	T1059001	Command and Scripting Interpreter : PowerShell	Executed a variety of PowerShell scripts.
8	Resource Development	T1059005	Command and Scripting Interpreter : Visual Basic	Visual Basic to download malicious payloads.
9	Persistence	T1059006	Command and Scripting Interpreter : Python	Mac OS Python implant to gather data.
10	Credential Access	T1059007	Command and Scripting Interpreter : JavaScript	JScript for logging and downloading additional tools.
11	Collection	T1586002	Email Accounts	Compromised web portal email accounts to send spear phishing e-mails.
12	Collection	T1543003	Windows Service	Created new services for persistence.
13	Resource Development	T1555003	Credentials from Password Stores: Credentials from Web	browser extensions including Google Chrome to steal passwords and cookies from browsers.
14	Collection	T1005	Browsers Data from Local System	Collected Office, PDF, and HWP documents from its victims.
15	Privilege Escalation	T1074001	Data Staged : Local Data Staging	Staged collected data files under C: \Program Files\Common Files \System\Ole DB\
16	Exfiltration	T1587	Develop Capabilities	Created and used a mailing toolkit to use in spear phishing attacks.
17	Initial Access	T1114003	Email Collection : Email Forwarding Rule	Set auto-forward rules on victim's e-mail accounts.
18	Discovery	T1546001	Event Triggered Execution : Change Default File Association	HWP document stealer module which changes the default program association in the registry to open HWP document
19	Defense Evasion	T1041	Exfiltration Over C2 Channel	Exfiltrated data over its email C2 channel.
20	Resource Development	T1133	External Remote Services	RDP to establish persistence.
21	C&C	T1083	File and Directory Discovery	The ability to enumerate all the drives on an infected system.

Division	Tactics	code	Attack Name	Explanation
22	C&C	T1562001	Impair Defense : Disable or Modify Tools	Observed turning off Windows Security Center.

Table 7 shows the results by classifying and analyzing the Geumseong 121 Group cyber attack pattern change data (tactics, codes, attack techniques, etc.) using MITER ATT&CK.

Division	Tactics	code	Attack Name	Explanation
1	Collection	T1123	Audio Capture	Audio capturing utility known as SOUNDWAVE that captures microphone input.
2	Privilege Escalation	T1548	Abuse Elevation Control Mechanism	function in the initial dropper to bypass Windows UAC in order to execute the next payload with higher privileges.
3	C&C	T1071001	Application Layer Protocol : Web	Geumseong121 uses HTTPS to conceal C2 communications.
4	Persistence	T1547001	Boot or Logon Autostart Execution	Geumseong121 has added persistence via the Registry key HKCU\Software\ Microsoft\CurrentVersion\Run\.
5	Execution	T1059003	Command and Scripting Interpreter	Geumseong121 used the command-line interface.
6	Execution	T1059005	Command and Scripting Interpreter	Geumseong121 executes shellcode and a VBA script to decode Base64 strings.
7	Credential Access	T1555003	Credentials from Password Stores	Credential stealer known as ZUMKONG that can harvest usernames and passwords stored in browsers.
8	Collection	T1005	Data from Local System	Collected data from victims' local systems.
9	Impact	T1561002	Disk Wipe: Disk Structure Wipe	Access to destructive malware that is capable of overwriting a machine's Master Boot Record (MBR).
10	Initial Access	T1189		Strategic web compromises, particularly of South Korean websites to distribute malware.

Table 7. Geumseong 121 Cyber Attack Changing of Patterns Data Analysis Results

Division	Tactics	code	Attack Name	Explanation
11	Execution	T1203	Drive-by Compromise	The group has also used
				torrent file-sharing sites
				to more indiscriminately
				disseminate malware to victims.
				As part of their compromises,
				the group has used a Javascript
				based profiler called RICECURRY
				to profile a victim's web browser
				and deliver malicious code accordingly.
12	C&C	T1105	Exploitation for Client Execution	Flash Player (CVE-2016-4117,
				CVE-2018-4878) and Word (CVE-2017-0199)
				exploits for execution.
13	Execution	T1559002	Ingress Tool Transfer	Downloaded second stage
				malware from
				compromised websites.
14	Execution	T1106	Inter-Process Communication : Dynamic Data Exchange	
				Windows DDE for execution
				of commands and
				a malicious VBS.
15	Discovery	T1120	Native API	Leverages the Windows
				API calls: VirtualAlloc(),
				WriteProcessMemory(), and
				CreateRemoteThread()
				for process injection.
16	Initial Access	T1566001	Peripheral Device Discovery	Bluetooth device harvester,
				which uses Windows Bluetooth APIs
				to find information on
				connected Bluetooth devices.
17	Defense Evasion	T1055	Phishing :	Delivers malware using
			Spear Phishing	spear phishing emails
			Attachment	with malicious HWP attachments.
10	D'	T 100 2	~ · · ·	Injects its malware variant,
18	Discovery	T1082	Process Injection	ROKRAT, into the cmd.exe process.
19	Discovery	T1033	System	Collects the computer name,
			Information	the BIOS model,
			Discovery	and execution path.
20	Impact	T1529	System	
			Owner	Identifies the victim username.
			/User Discovery	
21	Execution	T1204002	System Shutdown/Reboot	Malware that will issue
				the command shutdown
				$\langle n \rangle$ t 1 to report
21			Shutdown/Reboot	r t 1 to reboot

5 DISCUSSION AND CONCLUSIONS

In this paper, data of the North Korean cyber hacking groups, which has been publicly engaged in cyber attacks since 2007, was applied to MITER ATT&CK and analyzed. The attack origin was estimated with the actually verified malicious IP band, URL, malicious code information, and public vulnerability information through correlation analysis using public source information and ATT&CK data. Through this, it was possible to analyze North Korean cyber attacks groups and use ATT&CK data to implement diagrams of North Korean cyber attacks based on VBScript and propose the results of cyber attacks analysis data of major hacker organizations in North Korea. In the future, it will establish visualization models for attack processes such as identifying hacker organizations' intentions, identifying cyber threats trends, securing cyber attack technologies, and securing attack origin precision tracking and bridgehead using open source intelligence-based analysis data.

References

- [1] Hacker power north korea.. what are the counter-measures? http://www.digitaltoday.co.kr [Online; Accessed on September 10, 2021].
- [2] Shodan.io. https://www.shodan.io/ [Online; Accessed on September 10, 2021].
- [3] Virustotal. https://www.virustotal.com/gui/home/upload [Online; Accessed on September 10, 2021].
- [4] J. C. ADVISORY. Guidance on the north korean cyber threat. *Cybersecurity and Infrastructure Security Agency (CISA)*, 2020.
- [5] J. C. ADVISORY. North korean advanced persistent threat focus: Kimsuky. *Cybersecurity and Infrastructure Security Agency (CISA)*, 2020.
- [6] EstSecurity. Security trend report: North korea-linked thallium groups continues 'blue estimate' apt campaign. *ESTsecurity*, 2020.
- [7] S. B. et al. China's cybersecurity strategy and its application to north korea: Focusing on identity and awareness. *Asia Review*, 10(1):53–79, 2020.
- [8] N. Jang. Ransomware and north korea's cyber-threat. JPI Research Series, 40:73–77, 2017.
- [9] J. L. J.W. Kim and H. Chang. Current status and prospects of industrial technology leakage through cyber attacks. *Review of KIISC*, 31(3):7–12, 2021.
- [10] J. Kim. North korea's cyber organization-related information research. *Journal of the Korean Society of Computer and Information Engineers*, 2020.
- [11] Y. Y. Kim and N. S. Baek. A study on the countermeasures to the cyber-psychological war in north korea. *Journal of Korean Terrorist Association*, 12(2):29–49, 2019.
- [12] KISA. Cybersecurity issue report: TTPs #1 analysis of internal network penetration cases through the website. *Korea Internet & Security Agency (KISA)*, 2020.
- [13] KISA. Cybersecurity issue report: TTPs #2 analysis of attack network composition method that collects information through spear phishing. *Korea Internet & Security Agency (KISA)*, 2020.
- [14] KISA. Cybersecurity issue report: TTPs #3 analysis of attacker's strategy of using malicious code. *Korea Internet & Security Agency (KISA)*, 2020.
- [15] KISA. Cybersecurity issue report: TTPs #4 phishing target reconnaissance and attack resource analysis. *Korea Internet & Security Agency (KISA)*, 2020.
- [16] J. L. M.K. Chung and H. Kwon. A study on north korea's cyber attacks and countermeasures. *Journal of Information Technology Services*, 15(1):67–79, 2016.

Author Biography

GwangHyun Ahn was received a B.S. degree in cybersecurity from Far East University, Chung-cheong bukdo, South Korea, in 2018. He is currently pursuing a Ph.D. degree with the Department of Computer Engineering, Sejong University, South Korea, Since 2020. He was commissioned as an officer specializing in cyber security in the Republic of Korea and served in the military for three years before moving to a state civil service. His research interests include cybersecurity, industrial security, Incident Response, Forensic, Self-driving car hacking, Profiling of major hacking

groups and Dark Web.

Seon-a Lee is an undergraduate student in Department of Information Security Engineering, Sangmyung University, South Korea. Her research interests include Cybersecurity, Industrial security, Incident Response, Forensic, Web Hacking, Android mobile Hacking, Network system security and Artificial intelligence.

Won-hyung Park is a professor in Department of Information Security Engineering, Sangmyung University, South Korea. He received Ph.D. degree in Department of Information Security from the Kyonggi University, South Korea, in 2009. He coauthored more than 50 technical papers in the area of information security. Also, he has been reviewer for International Journal(Computer-Journal) of Oxford University. press and IEEE Conference.