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Abstract

Spectre attacks is an important category of side channel methods, which allows attacker to obtain
sensitive data by observing the system. Spectre attacks exploit modern processors’ features designed
for the performance: out-of-order execution and speculative execution. Also, in Spectre attacks,
cache side-channel attack methods play an important role. The high-level goal of Spectre attacks
is to load target data into the cache through the speculative execution. Once it has been done, the
next step is leaking information. To the end, the cache side-channel methods are employed to leak
information, because there is no direct way to read data from the cache. In this paper, we discuss
variations of Spectre attacks and discuss defense mechanisms for each of them.
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1 Introduction

Spectre attacks is an important category of side channel methods, which allows attacker to obtain sensi-
tive data by observing the system. Spectre variants abuse the optimization features of modern processors
such as the out-of-order execution [1]. Especially, Spectre attacks are well-known for their ability that
can break isolation between applications (and the operating system potentially) [1, 2]. In this paper, we
revisit the Spectre attack variants from the root cause, and discuss proposed defense mechanisms for
each of them to find limitations still remained. To this end, we discuss variations of Spectre attacks and
introduce each generalized defense method and discuss their effectiveness as well as the efficiency.

1.1 Cache and Side-channel

Except the register which is the fastest and built in the processor, cache is on the top of the memory
hierarchy [3]. Cache, which is a high-speed and small internal memory to buffer the data that is frequently
used, is built for processors to overcome the latency of system memory access. The design of cache had
been made based on two basic principles: (1) Cache is a shared resource by multiple processes; and (2)
Cache supports processors in such a way that they can have very fast access time for any data in cache.
Naturally, there is a noticeable difference in access time between a cache hit and a cache miss. If we
check the time spent in loading data, we can figure out whether or not the data has been accessed by other
processes. This simple fact allows attackers to leak sensitive data from other processes [4, 5, 6, 7, 8, 9].

Attacks using the difference of data access times is so called the cache side-channel attack. These
attacks have been developed to have formalized and generalized attack methods for different attack situ-
ations [10, 11, 12, 13, 14, 15, 16]. Cache side-channel attacks have been exploited to steal cryptographic
keys, user inputs, execution paths, and addressing information [17, 18, 19, 20, 21, 22, 23, 24].

In Spectre attacks, cache side-channel attack methods play an important role. The high-level goal of
Spectre attacks is to load target data into the cache through the speculative execution. Once it has been
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done, the next step is leaking information. To the end, since there is no direct way to read data from
the cache, the cache side-channel methods are employed to leak information regarding the data finally to
guess what the data is or what the address of the data is.

1.2 Optimized Execution Features

Modern processors have highly optimized techniques to maximize the performance. An out-of-order
execution is an approach for handling multiple instructions in parallel manner by executing some in-
structions in advance instead of executing instructions in strict order of their sequence. Different in-
structions have different execution times, depending on operation types. To take an example, a store
operation’s execution time is much longer than a load operation. Therefore, if a processor can executes
load instructions while it is processing a store operation, the processor can save many CPU cycles.

As proven, processors which are utilizing the our-of-order execution typically have another optimiza-
tion feature: speculative execution. The speculative execution is also to handle instructions in advance
for the performance reason. However, a processor execute instructions that it does not know whether to
execute or not, which totally relies on a prediction made by a processor.

One representative example is when a processor meets a conditional branch instruction. In case where
operation results of preceding instructions affect the branch condition, a processor executes instruction
along with a path that is predicted by the branch predictor rather than waiting the results. If the prediction
is correct, a processor can gain a lot of instruction cycles, maintaining a fully utilized pipeline. Otherwise,
it has to rewind its execution state to the point before the execution of branch instruction happened and
take the other path.

The result of the misprediction does not change program’s logical state but gives a performance
penalty on the program. However, the impact of the misprediction is actually not limited to the perfor-
mance. More importantly, it introduced new micro-architectural attacks—Spectre. Even though pro-
gram’s logical state can be restored correctly, results of the speculative execution cannot reinstate some
changes of hardware resources such as the cache. Once data has been fetched into the cache by a spec-
ulatively executed load instruction, the data will remain in the cache albeit the prediction was wrong.
Consequently, the changes of the cache arisen from the speculative execution renders attacker to be able
to obtain sensitive information via the cache side-channel.

2 Spectre Attacks

In this section, we discuss on four variations of Spectre attacks.

2.1 Variations of Spectre Attacks

According to the type of the speculative execution, four major Spectre variants have been discovered.
Commonly, overall procedure of spectre attacks consists of three steps as follows: (1) Preparing an
attack to execute a target code speculatively and to leak information e.g., making a branch condition is
being predicted to be true; (2) Executing the code executes speculatively; (3) Leaking information from
the cache side-channel. We briefly overview how each variant utilizes different type of the speculative
execution with its related example code.

Variant 1 (Bounds Check Bypass). This variant targets a conditional branch instructions. A processor
can execute a branch based on a prediction result of the branch predictor without knowing whether
it actually will be taken [25]. An example is illustrated in Code 1. When the variable length is
uncached, a processor needs to wait until the data is arrived from the memory and the comparison
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operation is done, not executing Line 2. However, as far as the prediction result is true, the Line 2
can execute speculatively—the data will be cached.

1 if(offset < length) {

2 *fp_target = arr[offset ];

3 }

Code 1: Example of Spectre variant 1.

Variant 2 (Branch Target Injection). Branch target injection takes advantage of the indirect branch pre-
dictor. The core idea is to flush the cache line containing the address to which program need
to jump. If it happens when a processor needs to jump and the cpu is waiting the address being
fetched from main memory, the processor will not know or jump to the address [26]. Consequently,
during the time the actual data is being fetched, we can make a processor speculatively execute
instructions in maliciously crafted memory area where the indirect branch predictor pointed to.

1 offset = read_offset ();

2 (* fptr_arr[offset ])();

Code 2: Example of Spectre variant 2.

Variant 3 (Rogue Data Cache Load). Spectre Variant 3, as known as Metldown [27, 2], showed access-
ing kernel memory area from user applications was possible by exploiting the speculative execu-
tion. This variant is to make a processor read inaccessible memory area speculatively while the
exception handler is taking care of an exception intentionally raised. Any kind of exceptions is
available for causing this speculative execution.

1 fake = *kernel; // for an exception

2 data = arr[offset_to_kernel_area ];

Code 3: Example of Spectre variant 3.

Variant 4 (Speculative Store Bypass). The most recently discovered Spectre variant 4 exploits an opti-
mization feature that renders load instructions execute speculatively [28]. It typically happens
during a store instruction is executing by aid of the memory disambiguation predictor. The point
is it can happen even if the address from which a processor need to load has not decided by the
preceding operations.

1 *offset = old_addr;

2 ...

3 *offset = new_addr; // being bypassed

4 data = arr[* offset ]; // load

Code 4: Example of Spectre variant 4.
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3 Defenses against Spectre Attacks

Proposed countermeasures against Spectre attacks can be categorized into three-fold: (1) Disabling op-
timization features; (2) Using hardware instructions to suppress speculative executions; and (3) Ap-
proaches using software only such as sanitizing array indices. We introduce each generalized defense
method and discuss their effectiveness as well as the efficiency. Unfortunately, any practical solution
that meets both the effectiveness and the efficiency has not shown up yet to mitigate all kinds of Spectre
attacks in Kernel.

3.1 Disabling Speculative Execution

First off, since the processors’ optimization features are the root cause, Spectre attacks can be mitigated
by disabling them. For currently deployed processors, disabling the speculative execution can be accom-
plished by updating a microcode. Typically, microcodes are used to interpret a processor’s instructions
when an instruction executes for providing additional functionalities of them or security purposes.

Manufacturers such as Intel has updated many CPUs’ microcode to prevent Spectre attacks. Espe-
cially, updated microcode targets for mitigating Spectre variant 2, 3, and 4. For an example, Speculative
Store Bypass Disable (SSBD) microcode has been introduced by Intel, AMD, and ARM for inhibiting a
speculative store bypass (Sepectre variant). This microcode makes store instructions cannot be bypassed
so that any instruction after a store instruction is not able to execute speculatively.

However, employing the microcode for the entire kernel cannot be a suitable solution. As the more
microcode is being used for incapacitating the speculative execution, naturally the heavier performance
degradation will be imposed. Also, the performance impact on kernels is directly related with user-level
applications.

3.2 Using Memory Barrier

A memory barrier is a type of hardware instruction that constraints memory operations to enforce them
execute in sequential order, prohibiting out-of-order executions. A processor manufacturer—Intel—
suggested using the Load Fence (LFENCE) instruction to serialize programs’ execution order. Espe-
cially, the LFENCE instruction is known for that it does not allow any following data loading operations
until the execution of it has finished, in turn, consequently, the instruction seems it can be used to defend
Spectre attacks.

The first concern with respect to the barrier instruction is the performance degradation similar to the
use of microcode. Because, if the LFENCE is used broadly, strictly serialized executions caused by the
barriers can make a devastating performance overhead. Therefore, the use of LFENCE instructions must
be accompanied with a sound static analysis method to find appropriate and minimal places for inserting
the instruction.

However, static analyses are neither complete nor sound. As far as a sound static analysis is not
possible, applying the LFENCE instructions on kernels can be too liberal. When it comes to the simple
patterns of code gadgets that can be exploited by Spectre attacks, we can easily expect that numerous
false-positive results will come out. Consequently, huge manual efforts are inevitable to find code gadgets
and insert the barrier instruction.

More importantly, the architecture manual’s unclear explanations on the LFENCE instruction disori-
entate us to employ it. White papers of Intel guided that the LFENCE instruction between a store and the
subsequent load can prevent the speculative execution, but, the architecture manual states that processors
are free to fetch data to the cache from the memory speculatively even though the LFENCE instruction is
used. Therefore, the effect of load fence instruction has to be refined clearly to do not misinform security
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researchers and developers and ultimately to prevent security accidents caused by it. In this work, we
empirically show the effect of barrier instructions and a found zero-day-vulnerability that comes from
misusing it.

3.3 Other Software Mitigations

3.3.1 Kernel Page Table Isolation (KPTI)

This mitigation method is designed to eliminate reachable kernel data from the user-land through the
Spectre variant 3 (Meltdown). The kernel exposes the minimal set of page tables that can be used to call
system functions from user-land applications. The other set of page tables for accessing the kernel code
and data is active only when the kernel code is executing. Isolating the kernel page tables is an expensive
solution in terms of the performance overhead but it effectively helps kernels to keep their sensitive data
from the Spectre variant 3. However, since the kernel at least needs to open system functions for running
applications on it, KPTI is not able to prevent Spectre attacks using code gadgets of the kernel.

3.3.2 Retpoline

It is a compiler-based method that can protect indirect branches from the Spectre variant 2. Retpoline
utilizes a trampoline technique (loops constructed by indirect branches) until the speculative execution
stops and jump to the actual address. In other words, to avoid the indirect branch predictor’s prediction
results, Retpoline let a processor execute code inserted by it. Even though this mitigation showed the
promising result with a good performance compared with a mitigation using the microcode, but, it has
been proved that some of the recent processors such as Intel’s Skylake can ignore the Retpoline effect1.

4 Concluding Remarks

In this work, we discuss on variations of Spectre attacks and defense mechanisms against them. Because
the root causes of Spectre attacks were design issues designed to improve the performance of the modern
processors, unfortunately, any practical solution that satisfies both the effectiveness and the efficiency
has not shown up yet to mitigate all kinds of Spectre attacks in Kernel. Therefore, it still is of great
importance to develop an effective and efficient security solution to mitigate Spectre attacks.
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