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Abstract

Human activity recognition (HAR) mechanisms that distinguish human behavior utilizing wearable
sensors have advanced significantly over several years. Not only have state-of-the-art techniques ig-
nored hand-crafted features in favor of end-to-end deep learning approaches, but best practices for
designing experiments, preparing datasets, and assessing activity recognition systems have changed
in lockstep. This tutorial will provide an in-depth, hands-on introduction to the topic of sensor-based
HAR for those who are new to it. We will concentrate on deep learning-based HAR in this tuto-
rial utilizing data from intelligent wearable sensor devices. This tutorial introduces the SDL-HAR
framework, which provides a general-purpose framework for data preprocessing, data generation,
model development, and evaluation. We describe each aspect of the provided system in-depth, offer
references to relevant research, and explain the community’s best practice methodologies for activity
identification. Two exemplary deep learning approaches, convolutional neural network (CNN) and
long short-term memory neural network (LSTM), are deployed in this lesson using state-of-the-art
public HAR datasets. Additionally, this tutorial highlights the problems and future research direc-
tions of sensor-based HAR.

Keywords: human activity recognition, deep learning, wearable sensor, hand-on tutorial, convo-
lutional neural network, long short-term memory neural network

1 Introduction

Due to technological advances of wearable sensing innovations, smart wearable devices (e.g., smart-
watches, smartphones, and smart glasses) have become one of the most beneficial ubiquitous and perva-
sive computing devices, owing to their ability to assist us in our everyday lives with healthcare. Wearable
devices are electronic gadgets that people wear constantly and ubiquitously to collect or monitor biomet-
ric data relating to their health or exercise based on their activity [1]. Wearable gadgets that provide
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biometric monitoring are a significant source of information collection [2]. They will capture data of
various sorts and from a range of situations continuously and uninterruptedly. For example, in the health
sector, the detection of physical activity based on wearable sensor data has aided in avoiding adverse out-
comes associated with dietary misbehavior. For instance, tracking the amount of time a person spends
engaged in eating-related activities could be a valuable criterion for diagnosing and treating obesity, di-
abetes, cancer, and cardiovascular disease [3, 4, 5]. Another example is smoking detection data, which a
person or a health professional could also utilize to control their smoking habit by better understanding
their daily smoking habits [6].

At the moment, intelligent wearables also provide a range of sensors, including accelerometers, gy-
roscopes, magnetometers, and many other environmental sensors. These monitors have been used as a
feasible and attractive advantage over traditional wearable devices to investigate human behavior identi-
fication. The sensor-based HAR solution could be regarded as a machine learning (ML) framework built
on the individual’s smartphone and continually identifies the individual’s actions. In contrast, the smart-
phone is linked to a portion of the participant’s body. By incorporating state-of-the-art machine learning
approaches such as decision trees, support vector machines, naı̈ve Bayes, and ANNs into traditional
movement identification systems, substantial improvements have been accomplished [7]. Nevertheless,
such conventional machine learning algorithms could depend on heuristic hand-crafted feature extrac-
tion, often constrained by domain expertise. Due to this constraint, typical machine learning algorithms
fail to perform classification accuracy and other assessment criteria.

Deep learning (DL) methodologies are applied in HAR research to solve the issues mentioned above.
Instead of manually extracting features from raw sensor data, they may be learned using many hidden
layers. These techniques’ deep architecture allows the extraction of deep high-level features that are
more appropriate for complicated issues, including HAR. Lately, DL techniques have developed a com-
prehensive HAR based on smartphones [8, 9].

Currently, convolutional neural networks (CNNs) are one type of DL model that has demonstrated
outstanding performance in image classification, speech recognition, and text analysis [10]. When used
to classify time-series data, such as data in HAR, the CNN offers two benefits over other standard ML
models: local dependence and scale invariance [11]. One-dimensional CNNs have been explored, and
it has been demonstrated that these DL models could be employed to address the HAR issue with supe-
rior performance indicators than traditional ML techniques [12]. Long-term memory (LSTM) networks
have also been proposed to solve the HAR problem since sensor data is time-series data with temporal
dependencies [13]. The LSTM network can uncover temporal correlations in data without confounding
time steps, as the CNN network does.

There is no comprehensive tutorial on deep learning-based HAR using wearable sensors available at
the moment. There are various highly referenced articles on the subject, for example [7, 8]. However,
these works do not describe the design, implementation, and assessment of HAR systems invariably.
Considering their narrow emphasis on particular activity identification challenges and their tendency
to propose a single optimal solution to the challenges at present, these works also lack the range of
knowledge that a practical tutorial should provide. Only a few studies compare and contrast various
design alternatives, which we consider critical for educating and informing beginners to the aspect of
HAR.

This article addresses this knowledge gap by delivering the first tutorial on HAR using wearable
sensor data and DL. The tutorial explains the standard techniques and practice guidelines for develop-
ing, deploying, and assessing HAR solutions. The architecture given here is broad and is not confined
to activity identification through particular sensors. The paper is supplemented by publicly accessible
datasets and a feature-rich activity identification system written in Python and accompanying modules
for educational reasons.
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2 Related Works

Significant advances in the classification of human behavior have enabled continued growth in domains
such as medical bioinformatics [14, 15], industrial production [16, 17], environmental sensing [18, 19],
and sports assessment [20, 21]. Nevertheless, several critical fundamentals discussed in [22], upon which
most studies in this area have been founded, are no longer state of the art. Since deep learning has worked
its way into activity identification, previous algorithms’ requirements are often not properly relevant.

Feature engineering, commonly used in machine learning techniques, is no longer appropriate be-
cause [12] demonstrated that raw sensor information is handled employing deep learning models. How-
ever, recent literature such as Chen et al. [23] indicates that it could be advantageous in certain areas
and situational factors or when utilizing a particular deep learning algorithm. Conversely, traditional ma-
chine learning uses first-order statistics (mean, variance, median values, etc.). In comparison, when the
feature selection technique is used in conjunction with deep learning, the determined features are often
of a higher order.

Not only technological advances, including such transfer learning [24, 25], data augmentation [26,
27], and active learning [28], but also the constant search for some more effective network frameworks
[29, 30, 13, 31], are becoming an increasingly essential part of the HAR society, and are thus leading
studies in the areas of deep learning [32]. There are two methods of HAR: (1) video-based, as in [33],
and (2) inertial sensor-based. At the very least, an inertial sensor comprises an accelerometer and a
gyroscope but is sometimes augmented with a magnetometer. Complementary sensor technologies, such
as temperature or light sensors, could increase these records collected using these sensors. By integrating
an accelerometer with a gyroscope, machine learning methods’ categorization performance can already
be significantly improved [34].

As a result, contemporary scientific research is focused on integration algorithms for multimodal
datasets, such as [35] and [36], as well as on constructing network designs capable of handling both
forms of data input [37, 38]. Nonetheless, methods from computer graphics and computer vision and
language processing are frequently used to inspire systems for recognizing human behavior obtained
from the sensors data. This causes a divide between the two deep learning fields since state-of-the-art
sensor-based HAR lags far behind computer vision.

However, the body of studies on these subjects has grown steadily over the years (for a summary,
see [39] and [40]. However, the emphasis on critical principles seems to have shifted. These challenges
include that certain studies are difficult to repeat due to the unavailability of open source software, a
concentration on very narrow characteristics, and a failure to generalize significantly beyond the data set
on which they were generated. Consequently, this paper provides a hands-on tutorial for HAR researchers
on employing deep learning to real-world sensor-based HAR issues.

3 Recognizing Human Activity Using Deep Learning Approaches

This part introduces a framework for recognizing human activities based on deep learning techniques
and wearable sensor data. The framework is named SDL-HAR and is based on Bulling et al.’s activity
recognition chain (ARC) [22]. Figure 1 depicts the various steps of the SDL-HAR framework in this
tutorial. The raw data is initially pre-processed and split into sliding windows utilizing a collection of
inertial sensors implanted in intelligent wearables. In contrast to the ARC, feature extraction is depre-
cated in the SDL-HAR. Sensor data is sent into a deep learning network in its raw, pre-processed, and
segmented state to generate a collection of predicted labels. The resultant collection of forecasted labels
is then evaluated using state-of-the-art HAR criteria (i.e., Accuracy, Recall, Precision, and F1-score).
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Figure 1: The SDL-HAR framework used in this tutorial

3.1 Data Acquisition

In the initial step of HAR, data acquisition describes the act of gathering and recording original input
data collected by inertial sensors for HAR into a dataset. Sensor data are often acquired through a de-
signed program that operates on the wearable device and periodically samples data from built-in wearable
sensors.

Straczkiewicz et al. [41] discovered that the accelerometer, gyroscope, and magnetometer are the
most often utilized sensors for HAR since they measure acceleration, angular velocity, and smartphone
orientation, respectively. These sensors give high-resolution measurements that could differentiate be-
tween different types of activity. Table 1 contains information about the sensors.

Table 1: Three sensors often utilized in HAR in detail

Sensor Details Output +/-
Accelerometer Three orthogonal axes of the smartphone are

measured for the rate of change in velocity
Gravitational units (g) or measure
per seconds squared (m/s2)

Depends on the orientation
of smartphone

Gyroscope Determines three orthogonal angles of
smartphone angular velocity.

Radians per second (rad/s) Depends on the direction
of rotation

Magnetometer Indicator of Planet’s magnetic flux density
relates to the phone’s three orthogonal axes

Microtesla (mT ) Depends on the orientation
of smartphone

For the purpose of analyzing sensor data, sampling frequency refers to the number of occurrences
that a sensor collects during a one-second time frame. Typically, the sampling frequency is chosen to
balance measurement precision and battery depletion. Inertial sensors were frequently sampled at a
20–30 Hz frequency in the studied research. The largest differences were shown in cases where power
consumption was a concern (e.g., accelerometer samples at 1 Hz [42]) or when researchers utilized so-
phisticated signal processing techniques including time-frequency segmentation or activity patterns that
need a higher sampling frequency (e.g., accelerometer sampled at 100 Hz [43]). According to detailed
research, inertial sensors sampling at a rate of 20 Hz supplied appropriate data to differentiate between
different modes of transportation [44]. In contrast, a sampling rate of 10 Hz sufficed to distinguish be-
tween multiple ways of mobility [45]. Reduce the sample rate from 100 Hz to 12.5 Hz, and the length of
data gathering on a single battery charge increases by a factor of threefold [46].

The strategy could serve as a model for establishing confidentiality procedures that allow for fu-
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ture research replication when constructing a sensor-based HAR platform. An alternative is to utilize
publically available datasets, as illustrated in Table 2.

Table 2: Details of the three most commonly used sensors in HAR

Dataset Subject Environment Sensors Body Location Activities References
UCI-HAR 30 Controlled Acc. Gyro. Lower body part Posture, mobility [47]
WISDM 36 Controlled Acc. Lower body part Posture, mobility [48]
UniMiB SHAR 30 Controlled Acc. Lower body part Posture, mobility, fall [49]
MobiAct 54 Controlled Acc. Gyro. Mag. Lower body part Mobility, other [50]
Complex 10 Controlled Acc. Gyro. Mag. Lower body part Posture, mobility [51]
Real-life HAR 19 Free-living Acc. Gyro. Mag. GPS NA/unconstrained Mobility, locomotion, other [52]
Transportation
Mode Detection

13 Free-living Acc. Gyro. Mag. Others NA/unconstrained Mobility, locomotion [53]

Additionally, data exploration and visualization are processes used to decipher sensor data char-
acteristics in each HAR dataset. Figure 2 displays some accelerometer data samples, while Figure 3
demonstrates some examples of gyroscope data obtained from smartphone sensors and gathered in the
UCI-HAR dataset.

Figure 2: Accelerometer data samples of UCI-HAR dataset

Figure 3: Gyroscope data samples of UCI-HAR dataset
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3.2 Data Pre-processing

Data pre-processing is a set of methods used to restore, filter, and manipulate raw sensor data collected for
HAR measurements. This phase is essential for three reasons: (1) performance measures integrated into
smartphones are frequently less steady than research-grade data acquiring modules, and as a result, data
could well be recorded inconsistently or contain incomplete data or outliers unrelated to a participant’s
behavioral intention; (2) the spatial perspective of the device (for example, how the mobile is placed in a
participant’s pocket) affects tri-axial readings of inertial sensors, possibly diminishing the HAR overall
system performance;

Generally, the first category of impediments was handled utilizing signal processing methods. For
example, researchers advocated using linear interpolation [54] or spline interpolation [55] to compensate
for the required and operating sampling frequency discrepancy. These processes were applied to various
impacted sensors, most notably the accelerometer, gyroscope, magnetometer, and barometer. Additional
time-domain pre-processing addressed data reduction, which eliminates redundant data components. To
accomplish this, the beginnings and finish of each action bout, a short time of movement of a particular
type, were trimmed since they were regarded unrepresentative of the action [56]. The investigators also
addressed dataset imbalance, which arises when the training dataset has differing amounts of occurrences
for distinct activity groups. This circumstance predisposes the classifier to overfit on behalf of the more
significant class; in the examined cases, this problem was overcome by increasing or decreasing the
sample size [57, 58, 59]. Additionally, the data was analyzed to eliminate high-frequency noise (i.e.,
denoising). The literature review revealed some many methodologies are appropriate for this challenge,
including through low-pass finite impulse response filters (typically with a cutoff frequency of 10 Hz for
inertial sensors and 0.1 Hz for barometers) [60]. These approaches eliminate the fraction of the signal
that is highly improbable to be caused by the actions of involvement; exponentially weighted moving
[54]; moving median [61]; singular-value decomposition [62].

Some other aspects of data pre-processing take device alignment into account. Wearable sensor
readings depend on device orientation, which is influenced by clothing, body form, and motion dur-
ing dynamic activities [57]. One of the most often described options in the research is to convert the
three-dimensional signal into a univariate vector magnitude that is rotational stable and more resilient
to interpretation. Traditionally, this distinction was accomplished using a low-order Butterworth filter
(e.g., order 3) with a cutoff frequency less than 1 Hz. This approach was often used with data from
accelerometers, gyroscopes, and magnetometers. Accelerometer data were additionally filtered digitally
to separate it into linear (body-related movements) and gravitational (related to spatial device awareness)
acceleration [63]. Traditionally, this distinction was accomplished using a low-order Butterworth filter
(e.g., order 3) with a cutoff frequency less than 1 Hz.

3.2.1 Data Segmentation

This step divides sensor data into manageable segments and estimates signal characteristics for each
segment. In the analyzed publications, this segmentation was often accomplished by using a windowing
approach that allowed for the overlap of subsequent windows. The window size was typically fixed at 1
to 5 seconds, with the overlap of subsequent windows frequently set to 50%, as seen in Figure 4. Nu-
merous investigations on the appropriate window size corroborated this general finding: small windows
(1–2 seconds) were adequate for identifying posture and motion. Still, somewhat longer windows (4–5
seconds) performed better in categorization [64, 65]. Even larger windows (10s or more) have been ad-
vocated for detecting locomotion patterns or for HAR solutions that use Fourier-domain characteristics
(the resolution of the resultant frequency spectrum is inversely related to window length) [44]. In gen-
eral, this adjustment intends to attain a close match between the size of the window and the time of a
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single occurrence of the action (e.g., one step). Researchers investigated more adaptable segmentation
algorithms for a useful purpose. One possibility was to segment data according to designated time events
such as zero-cross points, peak points, or valley points, which correspond to the beginning and finish of
a specific motion bout [54, 57]. This enabled segments to be of varying lengths to coincide with a single
essential action time. Generally, this method was employed to detect quasiperiodic movements such as
walking, running, and stair climbing [62].

Class #Activity_1

x-axis 
sensor data

Sensor Data

Actual Activities

t = 1 t = TSliding Window

Step Size

Label = Class #Activity_1

Label = Class #Activity_2

Class #Activity_2

Class #Activity_n

y-axis 
sensor data

z-axis 
sensor data

Figure 4: Data segmentation using a windowing technique with 50% overlapping proportion

3.3 Data Generation

Data generation is a phrase that describes the process of splitting a dataset into training and test data
according to a predefined procedure. Commonly, the chosen approach is cross-validated, which divides
the acquired dataset into two or more pieces and testing – and utilizes just the portion of the data not
used in training for testing. Cross-validation processes are mentioned in the literature, with k-fold and
leave-one-out cross-validation. This technique is becoming the most frequently used [66] as shown in
Figure 5. The most often used train-test ratios were 90/10, 70/30, and 60/40. Validation is particularly
beneficial if conducted utilizing surveys involving diverse demographics and smartphone use patterns.
This technique enables one to comprehend the HAR system’s generalizability to real-world settings and
people. In [67], [68], and [69], we discovered a few investigations that used this validation strategy.

3.4 Model Training and Classification

A wide range of inference approaches using diverse strategies has lately been discovered in DL research
on HAR. According to HAR researchers, deep neural networks surpass classical machine learning in
terms of recognition performance. Classification methods capable of solving the HAR issue with high
efficiency include CNNs and LSTMs. Depending on the procedure, the SDL-HAR framework uses either
training or classification to analyze the given data further to build HAR classifiers.
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Figure 5: Data generation techniques mostly used in HAR

3.4.1 Training Process

It is necessary to train the models before using supervised inference techniques. Data T = {(Xi,yi)}N
i=1

is used for training, containing N pairs of feature vectors Xi and their matching ground truth labels yi. To
reduce the classification error on T , model parameters θ could be trained. Using expectation maximiza-
tion [22], a separate model is trained for each class based on the training data T and an initial estimation
of the parameter θ . Gradient descent is minimized through filtering procedures. Sensor-based HAR
could benefit from deep learning approaches including CNNs and LSTMs.

1. CNN Model. NNs are multi-layered neural networks, and CNN is one such NN. CNN comprises
two major components: a network of interconnected nodes and a series of convolution and sampling
layers. Features are extracted from the convolution and sampling layers. A fully-connected network is
added at the top to learn the weights of categorization. Convolutional, pooling, and fully connected are
the three primary layers of CNNs. An explanation and an understanding of these tiers follow. Filters
make up the convolutional layer of the algorithm. These filters’ goal is to extract local features (the
feature map) from the input data (sensory data). One filter is used for each feature map. The feature
maps are created by sliding the matching filter over the input and calculating the dot product (convolution
process). Only the receptive field, the same size as the filter, is connected to each neuron in the feature
maps. In a single feature map, the weights of all neurons are the same. A benefit of sharing consequences
is that the calculation is more effective since there are fewer parameters. It is also possible to recognize
a specific pattern, regardless of where it appears in the inputs. The size of the feature map is mostly
determined by the number of strides and the length of the filter. The architecture of CNN is illustrated in
Figure 6.

2. LSTM Model. LSTM is now one of the fascinating subfields in DL. They have been utilized to
exhibit global performance in various challenging issue areas, including language translation, image ex-
planation, and text production. The LSTM network is a subclass of Recurrent Neural Networks (RNNs),
a neural network intended to solve sequential issues. A RNN could be considered the addition of loops
to an ordinary feed-forward MLP network. The memory cell, memory block, or simply cell is the com-
putational element of the LSTM network. Because the word neuron as a computing unit is so established
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Figure 6: The CNN architecture

in discussions of MLPs, it is frequently referred to as the LSTM memory cell. Weights and gates are
used to construct LSTM cells. The gates are critical to the memory cell’s operation. These are weighted
functions that further regulate the cell’s data flow. Three gates are present:

• Forget Gate: Determines the data to reject from the cell.

• Input Gate: Determines the information in the input should be used to modify the memory state.

• Output Gate: Determines what to output depending on the input and the cell’s memory.

LSTM cells, like conventional neurons, are grouped in layers, as seen in Figure 7, with the output of
each cell being sent to the subsequent cell in the layer and the network’s following layer. The production
of the final layer could be placed into dense and softmax layers for classification.

Figure 7: The architecture of LSTM

3. CNN-LSTM Model. A CNN model could be used in conjunction with an LSTM backend to
understand subsequences of input that are presented as a sequence to an LSTM model. This hybrid model
is referred to as a CNN-LSTM model. The CNN-LSTM design employs CNN layers to extract features
from input data and LSTM layers to provide sequencing forecasting. The CNN effectively removes
relevant and learning features from univariate time series data. The CNN-LSTM model will receive
subsequences of the main sequence as a block, extract features from each block, and then interpret the
retrieved features using the LSTM. The CNN-LSTM model’s design is depicted in Figure 8.

3.4.2 Classification

The process of categorization consists of two separate phases. In the first stage, each feature vector Xi

is mapped to a set of class labels Y = {y1, ...,yc} with accompanying scores using a trained model with
attributes Pi = {p1

i , ..., pc
i } (or confidence values) with the inference method I.

pi(y|Xi,θ) = I(Xi,θ), f or y ∈ Y (1)

9
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Figure 8: The architecture of CNN-LSTM

The scores correlate to probabilities in Bayesian techniques such as dynamic Bayesian networks or
naı̈ve Bayes classifiers. Numerous non-Bayesian classifiers could be calibrated to produce probabilistic
outputs comparable to those generated by Bayesian classifiers [70]. In a subsequent stage, the computed
Pi scores could be utilized in various ways. One of the most often used methods is to calculate the most
significant score and output the matching class label yi:

yi = argmax p(y|Xi,θ) (2)

4 Case Study

This tutorial will use the WISDM dataset [48] to demonstrate how to identify human behaviors using
accelerometer and gyroscope data from wearable sensors. The Wireless Sensor Data Mining (WISDM)
laboratory acquired the dataset in 2010 from 36 individuals under supervised laboratory circumstances.
The dataset contains 1,098,207 labeled samples representing six different activities: walking (38.6%),
jogging (31.2%), ascending (11.2%), descending (9.1%), sitting (5.5%), and standing (4.4%). The ac-
tions were captured at a sampling rate of 20 Hz (one sample every 50 ms). The sensor data was analyzed
using the SDL-HAR framework. Numpy, Pandas, and Sci-kit Learn libraries have been used to acquire,
research, and generate data. To study the effectiveness of deep learning methodologies, we developed
two standard CNN and LSTM models using the TensorFlow framework.

4.1 Software Configuration

The Tesla V100-SXM2-16GB graphics processor module was employed to enhance deep learning model
training. This tutorial walked through implementing it on the Google Colab Pro platform. The deep
learning models are implemented using Python (v.3.9.1) and CUDA (v.8.0.6). These investigations make
use of the following Python libraries:

• When retrieving, processing, and interpreting sensor data, Numpy and Pandas are utilized for data
management.

• For charting and viewing the outcomes of data exploration and model assessment, Matplotlib and
Seaborn are utilized.

• Scikit-learn (Sklearn) is a package for data collection and generation in experiments.

• Deep learning models are implemented and trained using TensorFlow and Keras.

10



The Deep Learning-based Human Activity Recognition Mekruksavanich and Jitpattanakul

4.2 Experiments and Results

4.2.1 Experiments

The experiments are diversified to measure the effectiveness of each deep learning network and to solve
the HAR concern. The first version employs a standard deep learning network known as the CNN
network. The second variant compares the CNN network to a recurrent neural network called LSTM.
The third variant is a CNN-LSTM hybrid deep learning model, which integrates an LSTM network with
a convolutional layer. Tables 3, 4, and 5 summarize the deep learning networks utilized in this tutorial.

Table 3: The summary of Hyperparameters for a CNN network used in this tutorial

Stage Hyperparameters Values

Architecture

Convolution-1
Kernel Size 3
Stride 1
Filters 16

Dropout-1 0.25
Maxpooling 2
Dropout-2 0.25
Dense 256

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Learning Rate 0.01
Number of Epoches 100

Table 4: The summary of Hyperparameters for a LSTM network used in this tutorial

Stage Hyperparameters Values

Architecture
LSTM-neuron 128
Dropout 0.25
Dense 256

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Learning Rate 0.001
Number of Epoches 100

4.2.2 Results

Table 6 summarizes the experimental findings of deep learning models trained on wearable sensor data
from the WISDM dataset. The experimental findings demonstrate that the hybrid deep learning model,
which consists of CNN and LSTM, surpasses other standard CNN and LSTM models with a maximum
accuracy of 94.76%. To conduct a thorough analysis of these achievements, we could examine the con-
fusion matrices of each deep learning study. Figure 9 illustrates the confusion matrices. The confusion
matrices demonstrate that the CNN-LSTM model performs effectively in all activities included in the
WISDM dataset. Figure 10 illustrates the comparative outcomes.
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Table 5: The summary of Hyperparameters for a LSTM network used in this tutorial

Stage Hyperparameters Values

Architecture

Convolution-1
Kernel Size 3
Stride 1
Filters 16

Convolution-2
Kernel Size 5
Stride 1
Filters 32

Dropout-1 0.25
Maxpooling 2
LSTM-neuron 128
Dropout-2 0.25
Dense 256

Training

Loss Function Cross-entropy
Optimizer Adam
Batch Size 64
Learning Rate 0.01
Number of Epoches 100

Table 6: Average metrics on classifier evaluation of deep learning models using WISDM dataset

Model Accuracy Precision Recall F1-Score
CNN 93.313%. (+/- 0.375%) 86.957%. (+/- 1.651%) 87.030%. (+/- 0.509%) 86.988%. (+/- 0.981%)
LSTM 92.765%. (+/- 1.265%) 92.888% (+/- 1.289%) 92.765% (+/- 1.265%) 92.807%. (+/- 1.282%)
CNN-LSTM 94.769%. (+/- 0.952%) 94.626% (+/- 1.006%) 94.769%. (+/- 0.952%) 94.592% (+/- 1.030%)

5 Conclusions and Challenging Research

This tutorial is intended for inexperienced with deep learning-based HAR using intelligent wearable sen-
sors. We started by explaining the significant research issues confronting researchers studying human
activity recognition. We then discussed activity recognition procedures in-depth as a general-purpose
framework for data processing, model creation, and evaluation. We reviewed recommended practice
methodologies established by the activity recognition research community. To illustrate the HAR plat-
form in action, including recognizing several everyday activities using inertial sensors integrated with a
smartphone. The example’s purposeful simplicity enabled us to evaluate several deep learning models
in terms of overall action recognition, which we expect will be helpful to beginners when constructing
more sophisticated activity detection systems.

This article provides a tutorial for scholars interested in sensor-based HAR on how to use deep learn-
ing to real sensor-based HAR challenges. Leveraging HAR using wearable sensor data as a case study,
this tutorial explains data preparation, data production, deep learning model design, training, and testing.
The authors believe that this article presents readers with valuable first-hand expertise in developing their
deep learning models for their research.

While human activity recognition has many of the same study issues as the broader subject of pattern
recognition, it also confronts certain distinct challenges.

• Deep learning approaches use fixed sliding window techniques to respond to data segmentation. A
static time window could be either too broad, collecting more than is required to identify specific
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(a) CNN (b) LSTM

(c) CNN-LSTM

Figure 9: Confusion matrices of (a) CNN, (b) LSTM, and (c) CNN-LSTM computed in the experiment

Figure 10: Comparative results of deep learning models for each activity in WISDM dataset

actions, or insufficiently narrow, collecting insufficient of the series to identify lengthy behavior
and actions. Currently, academics have focused on optimizing the segmentation of time series
data. Additional testing and study on variable activity segments and approaches that include both
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short-term and long-term properties (e.g., wavelets) are required to develop reliable models across
all time frames.

• Modern HAR techniques reach a good performance for basic activities such as jogging. Neverthe-
less, complicated tasks like eating, which could include a variety of distinct motions, continue to
offer obstacles. While hierarchical approaches have been established to address this uncertainty,
there is still potential for enhancement.

• When a model works well on data it has never seen before, it has a significant level of generaliz-
ability. When a model works well on training data but adversely on new data, it also seems to over-
fit. K-fold cross-validation or leave-one-participant-out cross-validation is commonly employed to
increase the model’s generalizability. Numerous variables will impact the model’s generalizabil-
ity in wearable-based HAR. As a result, integrating incremental learning and deep learning into
wearable HAR systems remains an ongoing challenge.
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A Python code for the case study

To assist in disseminating this research, we provide the Python code for the case study. Numpy, Pandas,
and Sci-kit Learn packages analyze the information. TensorFlow is used to design, train, and test deep
learning models.

# Data Reading
import pandas as pd
import numpy as np
f i l e = open ( f i l e n a m e )
l i n e s = f i l e . r e a d l i n e s ( )
p r o c e s s e d L i s t = [ ]
f o r i , l i n e in enumerate ( l i n e s ) :

t r y :
l i n e = l i n e . s p l i t ( ’ , ’ )

l a s t = l i n e [ 5 ] . s p l i t ( ’ ; ’ ) [ 0 ]
l a s t = l a s t . s t r i p ( )
i f l a s t == ’ ’ :

break ;
temp = [ l i n e [ 0 ] , l i n e [ 1 ] , l i n e [ 2 ] ,

l i n e [ 3 ] , l i n e [ 4 ] , l a s t ]
p r o c e s s e d L i s t . append ( temp )

e xc ep t :
p r i n t ( ’ E r r o r a t l i n e number : ’ , i )

d a t a = pd . DataFrame ( p r o c e s s e d L i s t , columns = columns )
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# Data P r e p r o c e s s i n g
import s c i p y . s t a t s a s s t a t s
def d a t a s e g m e n t ( df , f r a m e s i z e , s t e p s i z e ) :

N FEATURES = 3
f r a me s = [ ]
l a b e l s = [ ]
f o r i in range ( 0 , l e n ( d f ) − f r a m e s i z e , s t e p s i z e ) :

x = df [ ’ x ’ ] . v a l u e s [ i : i + f r a m e s i z e ]
y = df [ ’ y ’ ] . v a l u e s [ i : i + f r a m e s i z e ]
z = df [ ’ z ’ ] . v a l u e s [ i : i + f r a m e s i z e ]

# R e t r i v e t h e most o f t e n used Labe l i n t h i s segment
l a b e l = s t a t s . mode ( d f [ ’ l a b e l ’ ] [ i : i + f r a m e s i z e ] ) [ 0 ] [ 0 ]
f r a me s . append ( [ x , y , z ] )
l a b e l s . append ( l a b e l )

# Br ing t h e s e g m e n t s i n t o a b e t t e r shape
f r a me s = np . a s a r r a y ( f r a me s ) . r e s h a p e ( −1 , f r a m e s i z e ,

N FEATURES)
l a b e l s = np . a s a r r a y ( l a b e l s )

re turn f rames , l a b e l s

X, y = d a t a s e g m e n t ( sca l ed X , f r a m e s i z e , s t e p s i z e )

# T r a i n t e s t s p l i t
from s k l e a r n . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t
X t r a i n , X t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (X, y ,

t e s t s i z e = 0 . 2 , r a n d o m s t a t e = 0 , s t r a t i f y = y )

#Model B u i l d i n g
from t e n s o r f l o w . k e r a s import S e q u e n t i a l
from t e n s o r f l o w . k e r a s . l a y e r s import F l a t t e n , Dense , Dropout
from t e n s o r f l o w . k e r a s . l a y e r s import Conv1D , MaxPool1D
from t e n s o r f l o w . k e r a s . o p t i m i z e r s import Adam

model = S e q u e n t i a l ( )
model . add ( Conv1D ( 1 6 , 3 , a c t i v a t i o n = ’ r e l u ’ , i n p u t s h a p e = X t r a i n [ 0 ] . shape ) )
model . add ( Dropout ( 0 . 1 ) )
model . add ( Conv1D ( 3 2 , 5 , a c t i v a t i o n = ’ r e l u ’ ) )
model . add ( Dropout ( 0 . 2 ) )
model . add ( F l a t t e n ( ) )
model . add ( Dense ( 6 4 , a c t i v a t i o n = ’ r e l u ’ ) )
model . add ( Dropout ( 0 . 5 ) )
model . add ( Dense ( 6 , a c t i v a t i o n = ’ so f tmax ’ ) )
model . compi le ( o p t i m i z e r =Adam( l e a r n i n g r a t e = 0 . 0 0 1 ) ,

l o s s = ’ s p a r s e c a t e g o r i c a l c r o s s e n t r o p y ’ , m e t r i c s = [ ’ a c c u r a c y ’ ] )
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model . f i t ( X t r a i n , y t r a i n , epochs = 10 ,
v a l i d a t i o n d a t a = ( X t e s t , y t e s t ) , v e r b o s e =1)

#Model E v a l u a t i o n
from s k l e a r n . m e t r i c s import a c c u r a c y s c o r e , p r e c i s i o n s c o r e ,

r e c a l l s c o r e , f 1 s c o r e , c o n f u s i o n m a t r i x

p r i n t ( c o n f u s i o n m a t r i x ( y t e s t , y p r e d ) )
a c c u r a c y = a c c u r a c y s c o r e ( y t e s t , y p red , a v e r a g e =” w e i g h t e d ” )
p r e c i s i o n = p r e c i s i o n s c o r e ( y t e s t , y p red , a v e r a g e =” w e i g h t e d ” )
r e c a l l = r e c a l l s c o r e ( y t e s t , y p red , a v e r a g e =” w e i g h t e d ” )
f1 = f 1 s c o r e ( y t e s t , y p red , a v e r a g e =” w e i g h t e d ” )
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