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Abstract 

Facing the surge in malicious behaviors in the network environment, the existing cybersecurity 

knowledge graph suffers from fragmented security knowledge and limited application scenarios, 

making it challenging to collaborative malicious behavior analysis. To address this, we propose a 

cybersecurity behavior knowledge base (CSBKB) framework for comprehensive malicious behavior 

analysis. Based on knowledge of user behavior, attack traffic, and attack paths, we construct six types 

of knowledge graphs to characterize malicious behavior, including user behavior perception, user 

behavior mapping, malicious behavior association, malicious behavior category, domain attack, and 

malicious behavior path traceability graph. These graphs characterize malicious behaviors and form 

a comprehensive security behavior knowledge base. To fully utilize the graph structure information, 

we design a reasoning module based on the graph neural network further to explore the relationship 

between entities in the graph. Using DDoS attacks as a case study, we demonstrate this framework's 

construction and knowledge-reasoning capabilities. Experimental results demonstrate that the 

proposed CSBKB framework effectively realizes a comprehensive malicious behavior analysis 

mechanism encompassing "malicious user behavior monitoring, malicious behavior type detection, 

and malicious behavior path tracing." It can effectively analyze malicious behaviors, with an 

accuracy of more than 0.97 in detecting abnormal users, more than 0.97 in inferring DDoS attack 

types, and an identification rate of more than 0.92 for malicious behavior paths.  

 

Keywords: Cybersecurity knowledge base, Knowledge reasoning, Malicious behavior analysis, 

Graph neural networks. 

 
1 Introduction 

With the development of new information technologies and applications, the scale of the network continues to 

expand, resulting in an explosive growth of network security data generated in cyberspace. Consequently, 

network security managers find it increasingly difficult to quickly locate information related to malicious 

behavior and utilize it effectively [1]. Faced with complex network environments and a surge in malicious 

behaviors, existing network security protection solutions based on statistical methods or machine learning have 

problems such as complex data structure, harrowing feature extraction, poor generalization ability, and slow 

update of security detection knowledge [2]. 

As a specific knowledge graph in the security field, the Cyber Security Knowledge Graph (CSKG) is a 

large-scale semantic network composed of nodes and edges. It provides an intuitive modeling method for 

various attack scenarios in network security. In most related studies, it is synonymous with the cyber security 

Knowledge Base [3]. Cybersecurity knowledge graph data mainly comes from multi-source heterogeneous 

data such as security databases, reports, social media, and blogs [4]. The constructed graphs typically target 

single application scenarios like situation awareness, attack prediction, and attack path analysis [5]. The 

scattered data sources and single application scenarios lead to issues in the current security knowledge graphs, 
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such as difficulty in intercommunication of security knowledge and inconvenient collaboration in malicious 

behavior analysis. Additionally, these security knowledge graphs often lack a focus on network layer behavior 

analysis and reasoning. 

The reasoning technology of network security knowledge graphs serves as the core technological 

foundation for cognitive intelligence. Knowledge reasoning based on Graph neural networks can 

simultaneously consider both the semantic and structural information of the knowledge graph [6], Compared 

to traditional models based on logic rules and representation learning, which suffer from issues of low 

efficiency and limited rule coverage [7,8], reasoning using graph neural networks offers superior 

interpretability. It is urgent to build a knowledge base that effectively manages cybersecurity data and enables 

practical analysis and intelligent reasoning of malicious behaviors in communication networks. 

Therefore, this paper proposes a cyber security behavior knowledge base (CSBKB) framework for 

malicious behavior analysis to address the issues above. The main contributions of this paper are as follows: 

(1) The proposed framework extracts feature from user behavior data based on identity trust protocols and five 

types of mainstream DDoS attack traffic malicious communication behaviors, completing data preprocessing 

and structuring. The five types of attacks are network layer DDoS, application layer DDoS, low-rate DDoS, 

DRDoS, and botnet DDoS.  

(2) Based on user features, DDoS attack traffic features, and path tracing features, we build a CSBKB, forming 

six types of knowledge graphs: user behavior perception graph, user behavior mapping graph, malicious 

behavior association graph, malicious behavior category graph, domain attack graph, and malicious behavior 

path traceability graph. 

(3) We design Graph neural network algorithms for reasoning across three inference graphs: the user behavior 

perception graph, the malicious behavior association graph, and the domain attack graph realizing a 

comprehensive malicious behavior analysis mechanism of "malicious user behavior monitoring-malicious 

behavior type detection-malicious behavior path tracing".  

The rest of this paper is organized as follows: Section 2 discusses related work, Section 3 gives a detailed 

introduction to the proposed framework, Section 4 gives the detailed results and analysis of the experiments, 

and Section 5 concludes this study and provides some suggestions for future work. 

 

2 Related Work 

This section reviewed the related work on cybersecurity knowledge graph(CSKG) construction scenarios, 

malicious behavior analysis reasoning technology, and graph neural network technology in malicious behavior 

analysis.  

The cybersecurity knowledge graph can effectively analyze, mine, and associate massive amounts of data 

and information in the cybersecurity field. The literature [9] generated an extended attack graph to obtain the 

most probable vulnerability path and provide the success rate and loss of power grid attacks. The literature [10] 

specifically introduced an external dictionary, compiled from sources such as cybersecurity-related blogs, 

vulnerability databases, and Wikipedia, when generating word embedding vectors. This approach reflects the 

patterns and nuances of the cybersecurity domain. The literature [11] proposed a large-scale analysis and 

defense framework using aggregated CTI. It used knowledge graphs to extract information and store it in a 

structured format, retaining the semantics of threat intelligence. The literature [12] proposed an APT threat 

knowledge extraction algorithm that leverages deep learning and expert knowledge to complete and update the 

knowledge graph. This approach facilitates a defense method that integrates much-fragmented intelligence and 

can actively adjust defense strategies. However, the above literature focused on a single scenario when 

constructing knowledge graphs without paying attention to modeling malicious behaviors such as network 
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layer behaviors and user behaviors. The malicious behavior knowledge base built in the literature [13] is 

relatively complete. Still, its work focuses on implementing the distributed knowledge base and constructing 

and designing malicious behavior graphs. There is a gap in the research of malicious behavior reasoning based 

on graphs.  

Regarding the analysis and reasoning of malicious behavior, the literature [14] proposed a feature 

construction method to simulate user access behavior. It used the UCI machine learning repository database to 

train and test the behavior to detect abnormal users. It did not use knowledge graphs but provided a new 

perspective for malicious behavior analysis. The literature [15] assigned a weight to the nodes and edges in the 

traceability graph to express the threat level and used a greedy algorithm to find the attack path based on the 

threat level. Researchers have continually explored reasoning based on cybersecurity knowledge graphs to 

investigate malicious behaviors further. The literature [16] proposed a defense strategy reasoning model 

comprising a knowledge graph embedding algorithm (CTI-KGE) and reasoning rules. This model can 

automatically infer tail entities with any relationship with the head entity and complete threat information. The 

literature [17] integrated vulnerabilities, weaknesses, affected platforms, tactics, attack techniques, and patterns 

into coherent links. It employed reasoning rules to perceive threats in complex heterogeneous environments. 

The literature [18] pioneered a novel approach based on knowledge graph reasoning and knowledge 

embedding. This innovative method automatically detects potential attack patterns, significantly enhancing the 

efficiency and accuracy of network threat identification. However, the graph structure of the knowledge graph 

is not fully considered and applied during reasoning, making it impossible to achieve comprehensive reasoning 

about malicious behavior. 

In the field of malicious behavior analysis utilizing graph neural network technology, the literature [19] 

proposed a novel Recursive Evolution Network (RE-GCN) based on the Graph Convolutional Network (GCN). 

This model leverages GCN to learn the evolutionary representations of entities and relations at each timestamp, 

providing a dynamic and comprehensive approach to understanding malicious behaviors over time. The 

literature [20] proposed E-GraphSAGE based on GraphSAGE, which can capture the edge features of graphs 

in flow-based data and the topological information for network intrusion detection in the network. The above 

work has not integrated the knowledge graph. Graph neural networks use graph data representation methods. 

They can learn based on the graph structure's topological connections and node attributes to meet the 

knowledge graph's reasoning needs. The literature [21] employed a Graph Attention Network (GAT) model to 

simultaneously learn nodes' feature information and structural relationships within the malicious behavior 

structure graph. This approach transforms the task of malicious behavior detection into a node classification 

problem. The literature [22] applied GCN to DDoS attack path tracing, which determines the attacker's identity 

and location by restoring the DDoS attack's complete path. The literature [23] proposed a relation-aware graph 

attention network (QRGAT), which encodes the reasoning process into a reasoning graph and collaboratively 

captures the dependencies of different relation paths of each entity. Even so, applying Graph Neural Network 

reasoning methods for in-depth analysis of relationships and entities within malicious behavior knowledge 

graphs remains an area that requires further exploration. 

 

3 Cyber Security Behavior Knowledge Base Framework 

In this section, we first propose the construction requirements of the CSBKB for malicious behavior analysis, 

design a construction framework based on the requirements, and then introduce the overall process of the 

framework and the design and implementation rules of each module in detail. 

3.1 Demand Analysis 

Malicious Behavior Analysis (MBA) aims to identify, understand, and respond to malicious behaviors or 

attacks by monitoring, detecting, and analyzing abnormal and suspicious activities in the network. The CSBKB 

is an essential reference for formulating defense strategies. It not only needs to extract comprehensive and 

practical knowledge from multi-source heterogeneous data but also can reason and analyze behaviors. On the 
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defensive side, the knowledge base for malicious behavior analysis should be capable of answering critical 

questions such as who attacked, how the attack was carried out, and what the attack path was [24]. This 

capability enables the development of customized defense measures and countermeasures. Considering the 

above requirements, we design a CSBKB integration framework, including user behavior base, traffic behavior 

base, and attack behavior base. At the same time, we design behavioral reasoning modules in combination with 

the graph neural network algorithm to conduct a collaborative analysis of malicious user behavior, malicious 

behavior types, and malicious behavior paths. This module aims to address the questions: "Who attacked me?", 

"In what way?", and "What is the attack path?" 

3.2 Framework Overview 

To achieve intelligent analysis of malicious behaviors, we designed a CSBKB framework as shown in Figure. 

1. The overall framework includes a data layer, a knowledge layer, and a reasoning layer  

The knowledge base system is deployed at the gateway entrance. When DDoS attacks occur in the domain, 

the behavior data collection module of the data layer collects the user behavior data sent by the identity-based 

trusted protocol module and the DDoS attack traffic data occurring in the domain. Then, according to the 

behavior definition rules, data passes through the data processing module to form a structure that can be used 

to generate a knowledge spectrum in the cyber security behavior knowledge base. The knowledge layer stores 

the constructed CSBKB. After receiving data through the data acquisition interface, the CSBKB constructs 

corresponding knowledge maps in the user, traffic, and attack behavior bases. The reasoning layer obtains the 

graph dataset from the knowledge layer graph through the knowledge reasoning interface, which provides 

feature and connection information for training. The three reasoning modules use graph convolutional network, 

E-GraphSAGE, and graph attention network technologies, in turn, to train and save the optimal model and use 

the optimal model for online reasoning to achieve malicious user behavior discovery, malicious behavior type 

detection, and malicious behavior path tracing. Finally, after reasoning, the reasoning results of each module 

are updated to the corresponding knowledge graph of the knowledge layer through the knowledge update 

interface, and the content in the third-party bases is linked to analyze malicious behavior.  

 

Figure. 1. Framework for building CSBKB 
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3.3 Data Layer 

3.3.1 Behavior Description and Definition 

The essence of a communication network is traffic communication between users. The user is the initiator of 

communication behavior. Abnormal users initiate malicious behavior in the network. The behavior initiated 

by the user is transmitted in the form of traffic. Attack behavior includes the attack's type, source, and 

forwarding path. At the same time, to facilitate the reasoning of the attack path, the attack behavior in this 

article also covers network topology information. Therefore, the cybersecurity behavior (CSB) defined in this 

paper as shown in (1)： 

 CSB =< User behavior, Traffic behavior, Attack behavior > (1) 

The information transmitted in the network can be extracted into security behaviors that the knowledge base 

can understand. Based on the above analysis, we define each type of network security behavior in the 

cybersecurity behavior knowledge base in detail.  

User behavior is defined based on the information record of the identity-based trusted protocol Combined with 

the method of viewing behavior from the perspective of statistical characteristics in the literature [14], as shown 

in (2).The definition includes the user's identity identifier UID, user attribute UA, user EID address, number 

of successful identity authentications IAS, number of failed identity authentications IAF, number of successful 

access control ACS, number of failed access control ACF, number of successful separation mappings SMS, 

number of failed separation mappings SMF, type of failed access resource ARTF. 

 User behavior =< UID, UA, EID, IAS, IAF, ACS, ACF, SMS, SMF, ARTF … > (2) 

Traffic behavior is a collection of traffic characteristics in a certain period in the network, as shown in (3), 

including source port SP, destination port DP, source address SI, destination address DI, flow duration FD, 

flow rate FS, flow number FN, flow type FT, flow flag FF, etc. 

 Traffic behavior =< SP, DP, SI, DI, FD, FS, FN, FT, FF, … > (3) 

Attack behavior includes the information inferred from user behavior and traffic behavior, as well as the 

information reflecting the attack environment state of the network topology node, as shown in (4). These 

include network topology NT, source address SI, destination address DI, attack start time ST, attack end time 

ET, malicious behavior type TP, entropy feature EC, packet rate PR, byte rate BR, etc.  

 Attack behavior =< NT, SI, DI, ST, ET, TP, EC, PR, BR … > (4)  

3.3.2 Behavioral Data Collection 

The collected behavioral data comes from two aspects: one is the user historical behavior data of the identity-

based trusted protocol module [25]; the other is the traffic data of five major types of attacks, including 

network-layer DDoS attacks, application-layer DDoS attacks, low-rate DDoS attacks, distributed reflection 

denial of service attacks (DRDoS), and botnet DDoS attack [21,26]. 

We utilize the written Python script to collect statistics on data reflecting the user status within the network 

during the four processes of user authentication, access control, separation mapping, and reputation evaluation 

in the identity-based trusted protocol. We collect this data as user behavior data. To convert traffic data and 

extract 84 features in CSV text format as traffic behavior data, we utilize the traffic feature extraction tool 

CICFlowMeter [27]. Additionally, we use the network packet analysis tool Scapy [28] to extract entropy 

feature data related to IP addresses and forwarding ports, as well as packet rate and byte rate data from the 

traffic data, categorizing this information as attack behavior data. 

 



Construction of a Cybersecurity Behavior....  Keke Feng et al. 

149 

 

 

3.3.3 Behavioral Feature and Processing 

After collecting the behavior data, some abnormal data will be output, so we need to clean the collected 

malicious behavior data. We directly deleted the missing values in the collected data and determined 12 user 

behavior data features based on the user behavior description to distinguish abnormal users, as shown in Table 

1. 

In addition, considering the 84-dimensional flow features in the traffic behavior data, utilizing all of them 

would consume significant storage and computational resources. Moreover, not all features in the attack 

behavior data hold equal importance when selecting attack paths. Therefore, this paper employs the Random 

Forest Algorithm in conjunction with Recursive Feature Elimination (RFE) [29] to perform feature selection 

on the original feature set. Initially, we identify and optimize essential features to select the optimal feature set. 

Ultimately, we choose 26 features from the traffic behavior data and 11 path state features from the attack 

behavior data. The specific features are in Table 2 and Table 3. 

Table 1. User Behavior Data Features 

Feature Description Feature Description Feature Description 

IA 
Number of user identity 

authentications 
IAF 

Number of failed user identity 

authentications 
ARIAT 

The average interval between 

authentications 

AC Number of user resource accesses ACF 
Number of failed user resource 

accesses 
NHS 

Number of accesses to highly 

sensitive resources 

NLS 
Number of accesses to lowly 

sensitivity resources 
ACFA Type of failed access actions NAC 

Number of user permission 

changes 

SM Number of separation mappings SMF 
Number of failed separation 

mappings 
CW User reputation score 

Table 2. Traffic Behavior Feature Set 
Type Feature Type Feature 

Flow Feature 

Flow Bytes/s 

Time Feature 

Flow IAT Mean 

Flow Packets/s Flow IAT Std 

Down/Up Ratio Fwd IAT Min 

Packet Feature 

Fwd Packet Length Max Idle Max 

Fwd Packet Length Mean Idle Mean 

Fwd Packet Length Std Bwd IAT Total 

Average Packet Size 

Other Feature 

Fwd Act Data Pkts 

Packet Length Max Fwd Header Length 

Packet Length Variance Fwd Packets/s 

Signature Feature 
ACK Flag Count Fwd Seg Size Min 

FIN Flag Count Fwd Segment Size Avg 

Time Feature 
Flow Duration Bwd Init Win Bytes 

Flow IAT Max Bwd Packets/s 

Table 3. Path State Feature Set 
Feature  Description 

Packet rate Average number of packets forwarded per second 

Byte rate Average number of bytes forwarded per second 

Source IP entropy Entropy of source IP addresses 

Destination IP entropy Entropy of destination IP addresses  

TCP source port entropy Entropy of TCP source ports 

TCP destination port entropy Entropy of TCP destination ports 

UDP source port entropy Entropy of UDP source ports 

UDP destination port entropy Entropy of UDP destination ports 

H(Sip|Dip) The conditional entropy of the source IP  given the destination IP 

H(Sip|Dport) The conditional entropy of the source IP given the destination port 

H(Dport|Dip) The conditional entropy of the destination port given the destination IP 
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3.4 Construction of CSBKB 

3.4.1 Overview of Knowledge Graph Construction 

Figure. 2 shows the main contents and uses of each Graph. The graphs constructed in this section are divided 

into two categories. The reasoning graph provides the graph structure and data required for reasoning for the 

reasoning module, including the user behavior perception graph, malicious behavior association graph, and 

domain attack graph. The other is the display graph, updated by the reasoning module based on the results, 

which stores and displays the analysis results of malicious behaviors, including the user behavior mapping 

graph, malicious behavior category graph, and malicious behavior path traceability graph. 

Malicious behavior path 

traceability graph

 

To guide 
updates

Malicious behavior 

association graph
Flow source and 

destination IP

Traffic flow feature

To Reason

Path state feature

Topological 

information

Domain attack graph
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To Reason

Attack start node

Attack forwarding node
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Attack end node

To Reason

To guide 
updates

To guide 
updates
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Figure. 2. Knowledge Graph Overview 

3.4.2 Construction of User Behavior Base 

Table 4. Composition of user behavior perception graph 

Entity Attributes Relation 

Unknown user node 12 user behavior features Associated users with unknown behavior 

Normal user node 12 user behavior features Associated users with normal behavior 

Abnormal user node 12 user behavior features Associate users with abnormal behavior 

We construct the user behavior perception graph and the user behavior mapping graph in the user behavior 

base. The user behavior perception graph reflects users' behaviors within the network, storing the behavioral 

features of users and the connections between them. Table 4 presents the structure of the triples in this graph. 

The 12 user behavior features in the attributes come from Table 1. 

The construction of the user behavior perception graph begins with the user node as the primary entity. The 

connections between users are determined based on their communication times, linking users interacting within 

a thirty-minute window. This Graph serves as the input for reasoning about malicious user behavior.  

The user behavior mapping graph illustrates user activities, with the triple composition of the map detailed 

in Table 5. The entities involved are user nodes, user behavior nodes, and behavior type nodes. The user 
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behavior type nodes encompass three categories: abnormal users, normal users, and unknown users. We 

establish relationships between user nodes and user behavior nodes based on the collected user types and the 

behavior types inferred by the malicious user behavior reasoning module.  

Table 5. Composition of user behavior mapping graph 

Entity Attributes Relation 

User behavior type User behavior on the network Associate 3 user behaviors 

Normal user Normal user behavior  Associate normal user node 

Abnormal user Abnormal user behavior Associate abnormal user nodes 

Unknown user Undetermined nature user behavior Associate undetermined nature  user node  

User Node 12 user behavior features Associate 1 user behavior 

3.4.3 Construction of Traffic Behavior Base 

We construct malicious behavior association graphs and malicious behavior category graphs in the traffic 

behavior base. 

Table 6. Composition of malicious behavior association graph 

Entity Attributes Relation 

Malicious communication flow 26-dimensional flow features Associate User Node 

Network layer DDoS attack nodes IP address and port  Correlate network layer DDoS attack flows 

Application layer DDoS attack nodes  IP address and port Correlate application layer DDoS attack flows 

Low-rate DDoS attack node IP address and port Correlate low-rate DDoS attack flows 

DrDoS attack node IP address and port Correlate DrDoS attack flows 

Botnet attack node IP address and port Correlating botnet attack flows 

The malicious behavior association graph illustrates the communication flow relationships between user 

nodes within the network. It is input for the E-GraphSAGE model within the malicious behavior type reasoning 

module. Table 6 presents the graph triples. Nodes represent combinations of IP addresses and port numbers. A 

flow from one node to another is generated when a communication relationship exists between devices. At this 

point, an edge is established between the two nodes to represent this flow, with all features and information of 

the flow added to the corresponding edge as attributes.  

Table 7. Malicious behavior category graph composition 

Entity Attributes Relation 

Communication behavior Communication behavior in the network Associate flow type node 

Flow type node Description of each attack type Associate flow node 

Flow  node 26-dimensional traffic feature description Associate flow type node 

The malicious behavior category graph is mainly used to reflect the malicious behavior type to which the 

traffic node belongs and to provide query results for the traffic type. It can guide the formulation of attack 

response measures, including but not limited to the description of DDoS attacks. Table 7 shows the triplet 

structure of the graph. 

Each flow is defined as a communication behavior in the constructed malicious behavior category graph 

and is represented as a flow behavior node in the Figure. Each flow node corresponds to a specific 

communication behavior and points to a DDoS attack type node or a normal flow node, indicating the type of 

communication behavior.  

We can build a malicious behavior category graph for labeled flow nodes based on their type. For unlabeled 
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flow, we can combine the current information in the knowledge base and use the E-GraphSAGE model to 

reason, complete the relationship between traffic nodes and attack types, and update the graph. 

3.4.4 Construction of Attack Behavior Base 

The attack behavior base constructs a domain attack graph and malicious behavior path traceability graph. The 

domain attack graph records the routing information in the network and the connection relationship between 

devices. Its connection status is the actual topological connection status in the network, which can provide the 

device's path features used by malicious behaviors and their spatial distribution.  

 

Table 8 is the triple information of the domain attack graph. The specific content of the 11 features involved 

in the attributes is in Table 3. The domain topology graph provides input for the malicious behavior path 

reasoning module.  

Table 8. Composition of the domain attack graph 

Entity Attributes Relation 

router IP address, 11 features Associate other entities in the network 

Host IP address, 11 features Associate entities in the network 

Table 9. Composition of malicious behavior path traceability graph 

Entity Attributes Relation 

Router IP address, attack path type Associate nodes on the same attack path 

Host IP address, attack path type   Associate nodes on the same attack path 

The malicious behavior path tracing Graph is a collection of all malicious paths obtained by the malicious 

behavior path reasoning module, which records and displays all possible paths where malicious behaviors 

occur. Table 9 is the triple information of the malicious behavior path tracing graph. 

The malicious behavior path traceability graph can reflect the attack path and attack method. Based on the 

known attack path and attack method, it can evaluate the security risk of the system or network and identify 

the lack or insufficiency of security control.  

3.5 Reasoning Based on Knowledge Base 

This section proposes relevant graph neural network algorithms based on three reasoning graphs: user behavior 

perception graph, malicious behavior association graph, and domain attack graph. It introduces the design 

principles of each reasoning module. 

3.5.1 Malicious User Behavior Reasoning 

Graph convolutional networks [22] are relatively straightforward to implement. When the network scale 

increases and large-scale users are connected, GCNs can quickly scale to accommodate reasoning over large-

scale user graphs. Therefore, this section employs the GCN model to infer user behavior perception graphs. 

Using a two-layer graph convolutional network as an example, we apply ReLU and Softmax as the activation 

functions. Figure. 3 shows the schematic diagram of the process. 
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Figure. 3. Schematic diagram of malicious user behavior reasoning 

We define the user behavior perception graph generated in the user behavior base as G, and an undirected 

graph G=(E, R) represents the overall topological structure encompassing all users. We consider each user as 

an entity e, forming the entity set Eh = {e1, e2, … , eK}.The connections between users in the Graph constitute 

the relationship set Rh = {r1, r2, … , rl}. Additionally, each user behavior feature is regarded as an attribute of 

the user, forming the attribute set Ph = {p1, p2, … , pl}. 

 Global Profile = ⟨Eh, Rh, Ph⟩ (5) 

We derive the adjacency matrix A and the feature matrix X for the input of the graph convolution model 

from the user behavior perception graph. Assuming the number of users is K,  the adjacency matrix A is initially 

formed by generating a K×K zero matrix. Based on the connections in the user behavior perception graph, if a 

connection exists between two users, the corresponding elements in the matrix are set to 1. The resulting matrix 

serves as the adjacency matrix A for input. The feature matrix X is a K×L matrix constructed from the attribute 

set Ph of each user, which characterizes the behavioral profiles of all users. Here, L denotes the number of 

features for each user, and as specified in Section 3.3.3, L=12.  

We adjust the adjacency matrix A to Ã = A + I to preserve the user's inherent features during the operation, 

where I is the identity matrix. The formula for user feature propagation using this adjusted model is as follow 

(6). 

 
f(A, X) = softmax (D̃−

1
2ÃD̃−

1
2ReLU (D̃−

1
2ÃD̃−

1
2XW(0)) W(1)) (6) 

In this formula, W( ) is the fully connected weight matrix of this layer, and D̃−
1

2ÃD̃−
1

2 represents the Laplace 

normalization of the adjacency matrix, which aims to aggregate the behavioral features of surrounding users. 

As the information propagates through each layer of the Graph Convolutional Network (GCN), the feature 

information of each user node is simultaneously transformed and transmitted to its connected neighboring 

nodes. Concurrently, we aggregate the feature information of neighboring users to facilitate the fusion of 

knowledge surrounding the node. Ultimately, we convert aggregated information into class probabilities 

through a Softmax transformation. We identify the category with the highest probability as the inferred type 

of abnormal user behavior.  

We train the model using the stochastic gradient descent method to determine the optimal parameters for 

predicting the behavior category of user entities in the user behavior perception graph. Once trained, we deploy 

the optimal model in the user behavior base. We can then use this model for online inference to identify 

abnormal user behavior. Subsequently, we use the inference results to generate a user behavior map in the 

Neo4j graph database. 
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3.5.2 Malicious Behavior Type Reasoning 

E-GraphSAGE [20] is a method for learning inductive representations of graph edges. In the malicious 

behavior association graph, edges denote flow communications between nodes, storing the flow features. 

Therefore, we employ the E-GraphSAGE model to infer the type of attack traffic. This approach transforms 

the task of inferring the type of malicious behavior to which the traffic belongs into the classification of edges 

within the malicious behavior association graph. Figure. 4 illustrates this process. 

G

Edge Classification

Malicious Behaviour 
Associat ion Graph 

Create Node 
Embedding

 Edge 
Embedding

 E-
GraphSAGE

Convert Edge-Embeddings to Class  
Probabilit ies via: Log Softmax

 E-GraphSAGE  reasoning

Malicious Behaviour 
Category Graph  

Figure. 4. Malicious behavior type reasoning diagram 

The constructed malicious behavior association graph is represented as G(𝒱, ℰ), where 𝒱 is the set of nodes, 

and ℰ is the set of edges. This Graph provides edge features {euv, ∀uv ∈ ℰ}. Since the Graph lacks inherent 

node features, we initialize the node features using vector xv = {1, … ,1}(initial node embeddings). The 

dimension of each node vector is equal to the number of edge features in the flow. 

The malicious behavior association graph G and its feature data are then input into the E-GraphSAGE model 

for inference. The process first aggregates the information of surrounding edges to generate node embeddings 

and creates an aggregate embedding h𝒩(v)
k  of the sampled neighborhood edges at the kth layer, as shown in 

(7). 

 h𝒩(v)
k = AGGk({euv

k−1, ∀u ∈ 𝒩(v), uv ∈ ℰ}) (7) 

euv
k−1  denotes  𝒩(v) the edges in the sampled domain of node u in the k-1 layer, and uv denotes the edge 

{∀u ∈ 𝒩(v), uv ∈ ℰ}，𝒩(v) in the sampled domain of node ν. AGGk is the feature aggregation function. 

Next, we concatenate the node's embedding from the previous layer with the aggregate embedding of the 

sampled neighborhood. This combined embedding is then processed using a trainable weight matrix（Wk）, 

which serves as a trainable parameter of the model. The result is passed through the ReLU activation function 

to obtain the node embedding in the kth layer. Equation is as (8). 

 hv
k = σ(Wk ⋅ CONCAT(hv

k−1, hN(v)
k )) (8) 

The final node embedding depth is K，Zv = hv
K And the node embeddings of u and v are concatenated to 

produce the edge embedding zuv
K  , as shown in (9). 

 zuv
K = CONCAT(zu

K, zv
K) , uv ∈ ℰ (9) 

We train the E-GraphSAGE model following the process above. We utilize the mean function for the 

aggregation function, which computes the element-wise mean of the edge features in the sampled 

neighborhood. We define the mean aggregator function in E-GraphSAGE in (10). 

 
h𝒩(v)

k = ∑
euv

k−1

|N(v)|eu∈𝒩(v),uv∈ℰ
  (10) 
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|N(v)|e denotes the number of edges in the sampled neighborhood. When implementing, we select complete 

neighborhood sampling, meaning that we aggregate the edges in the neighborhood of informative nodes from 

the whole set. 

During the training process, we utilize the cross-entropy loss function and the Adam optimizer to perform 

gradient descent during the backpropagation phase. We pass the edge embedding through a Softmax layer, 

facilitating the training and optimization of the model parameters. After adjusting the model parameters to 

achieve the optimal model, we deploy the model in the traffic behavior base as a malicious behavior type 

reasoning model.  

We perform type inference on the edges representing flows in the malicious behavior association graph 

using this inference model. We calculate edge embeddings and convert them into class probabilities using the 

final Softmax layer. We determine the flow type by comparing these probabilities, thus completing the 

inference process. Following the completion of the reasoning, we update the results in the malicious behavior 

category graph within the Neo4j graph database by the generation rules of the malicious behavior category 

graph.  

3.5.3 Malicious Behavior Path Reasoning 

Reference [30] analyzes 13 packet features widely applicable to classifying DDoS attack behaviors. Among 

these features, IP entropy can reflect the node status within a specific timeframe. By continuously monitoring 

changes in entropy values, it is possible to track the forwarding nodes involved in the DDoS attack accurately. 

Building on this concept, this section employs the 11 path state features described in Table 3 to characterize 

the DDoS attack path where each node is located. By connecting the nodes on the same attack path, we can 

reconstruct the actual path experienced by the attack. 

 

 
  

 
︙ ︙ 

 Adjacency Matrix

Feature Matrix

...
GAT

...

Domain Attack Graph
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Figure. 5. Malicious behavior path reasoning process 

Since each node in the network topology may play a distinct role in the path of malicious behavior, we 

cannot generalize their roles in the reasoning process. The relationship weight information between network 

nodes warrants careful consideration. Therefore, this section employs the Graph Attention Network (GAT) 

model [21] to infer the type of attack path experienced by each node. Figure. 5 illustrates the overall process. 

The path state feature set of the nodes in the domain attack topology graph is denoted as h =
{h1, h2, … , hn}, hi ∈ ℝF. Here, n represents the total number of attacks forwarding nodes, and F represents each 

node's path state feature dimension, which is 11 in this context. Following a similar method to the malicious 

user behavior reasoning module, we obtain the adjacency matrix and feature matrix from the domain attack 

graph as the input for the graph attention model. Then, we use the model for reasoning. 

Within the model, for the connected nodes i and j, the calculation formula of the unnormalized attention 

correlation coefficient  ei,j is as (11). 

 ei,j = LeakReLu (a(Whi ∥ Whj)) (11) 
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In the above formula, W ∈ ℝF′×F is a learnable shared linear transformation matrix. The symbol ∥ 

represents concatenation, indicating that we need to concatenate the features of the current node and its 

neighboring nodes. a ∈ ℝ2F′×1 is a single-layer feedforward neural network used to calculate the similarity 

coefficient of the concatenated features. Finally, an activation function is applied to compute the normalized 

correlation coefficient. 

We calculate the attention correlation coefficient for each topological node and its related neighbor nodes. 

The normalized mutual attention correlation coefficient αi,j s obtained using the softmax function. The equation 

is as (12). 

 

αi,j = softmax(ei,j) =
exp(ei,j)

∑  (ei,k)K∈Ni

=
exp (LeakReLu (a(Whi ∥ Whj)))

∑  (LeakReLu(a(Whi ∥ Whk)))K∈Ni
 
 (12) 

In this context, the mutual attention correlation coefficient αi,jrepresents the importance of node i to node j. 

After we obtain the mutual correlation coefficients of all forwarding nodes in the global topology, we 

calculate the feature representation of the current node in the new dimensional space, as shown in (13). 

 hi
l+1 = σ(∑αi,jWhj

l) (13) 

Where represents the activation function used by the current layer. This paper uses the Relu function 

as the activation function for feature forward propagation during the forward propagation process. The specific 

category of the node is output through (14). 

 y = argmax(softmax(H)) (14) 

H represents the node embeddings from the final layer of the model, which indicate the predicted DDoS 

path type, signifying that the node is part of this attack path.  

Based on the principles above, we train the optimal model. Then, we use this optimal model for online 

reasoning of the node path state types. Subsequently, by referencing the topological structure of the domain 

attack graph, nodes on similar attack paths are connected in a directed manner to form a malicious behavior 

path traceability graph, as illustrated in Figure 5. This approach enables the complete description of the attack 

path experienced by each attack, thereby facilitating the reasoning of the malicious behavior path. 

3.5.4 Reasoning Module Related Applications 

User Launch Traffic Experience Path 

Malicious User 

Behavior Reasoning
Malicious Behavior 

Type Reasoning

Malicious Behavior 

Path Reasoning

Reasoning Results

Display 

What  type of traffic is? 

Who are malicious 

users?

What path has  the

 traffic experienced?

 

Figure. 6. Analysis of the application of reasoning modules 

Figure. 6 illustrates the analytical diagram of the associated application of the reasoning module. The results 

( ) 
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from the malicious user behavior reasoning module form a user behavior mapping graph, identifying the 

malicious user. The malicious behavior type reasoning module generates a malicious behavior category graph, 

indicating the type of traffic generated by the malicious user. The malicious behavior path reasoning module 

produces a path traceability graph, reconstructing the path the malicious user takes. 

We establish a comprehensive malicious behavior analysis mechanism by analyzing the user behavior, 

traffic behavior, and attack path behavior data of the same user using these three reasoning modules and 

correlating the reasoning results. This mechanism encompasses "malicious user behavior monitoring," 

"malicious behavior type detection," and "malicious behavior path tracing." 

 

4 Experimental Results 

This section describes the experimental environment, presents the evaluation metrics, and uses the launch of 

network layer DDoS attacks as an example to verify the implementation of the knowledge base for malicious 

behavior analysis mechanisms. Subsequently, the effectiveness of the three reasoning models is evaluated and 

compared with reasoning methods in similar scenarios. 

4.1 Experimental environment 

 

Figure. 7. system topology 

As shown in Figure. 7, we build the experimental environment on the virtual platform of VMware vSphere. 

We installed 24 hosts with identical conFigureurations to form the prototype system. Each host has a 40GB 

disk, 8GB of memory, and an Ubuntu 18.04 operating system. Among these, we utilized 21 hosts to create five 

different types of DDoS attack domains and normal traffic domains, including low-rate DDoS, application 

layer DDoS, network layer DDoS, botnet, and DRDoS [31]. Three hosts served as knowledge bases, each 
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deploying a Neo4j graph database to generate a knowledge graph. The user behavior knowledge base is linked 

to the identity-based trusted protocol module and receives user behavior knowledge from this module. 

Additionally, Scapy and CICFlowMeter tools were deployed in each attack domain, monitored by the traffic 

behavior knowledge base and the attack behavior knowledge base.  

4.2 Evaluation indicators 

In evaluating the reasoning model effect, precision, recall, and F1 score are used to evaluate the inference 

performance of the three models.  

In comparing methods, we use accuracy, malicious user recognition rate, and recognition time as evaluation 

metrics to assess the monitoring effectiveness of the malicious user behavior reasoning module on abnormal 

users. Accuracy represents the proportion of samples correctly classified by the model out of the total number 

of samples. The malicious user recognition rate indicates the proportion of malicious users accurately 

monitored compared to the network's total number of malicious users. Recognition time measures the system's 

duration to associate and infer all abnormal users. 

To verify the detection effectiveness of the malicious behavior reasoning module on traffic types, we 

consider additional metrics beyond accuracy, namely the malicious traffic detection rate (DR) and the 

malicious traffic detection capability (DC).  

The malicious traffic detection rate (DR) represents the proportion of correctly detected malicious traffic to the 

total malicious traffic and is defined as follows (15).  

 
DR =

∑ Ti
n
i=1

∑ Ai
n
i=1

 (15) 

Where i represents the category of malicious traffic，n represents the total number of，Ti is the number of 

correctly detected traffic instances in the malicious traffic category，Ai is the total number of traffic instances 

in the malicious traffic category.  

Malicious traffic detection capability (DC) is the ratio of the total number of malicious traffic instances to the 

number of undetected malicious traffic instances. This metric reflects the magnitude of detected malicious 

traffic, and its definition is shown in (16). 

 
DC =

1

1 −
∑ Ti

n
i=1

∑ Ai
n
i=1

 
(16) 

When comparing the malicious behavior path reasoning effect, we introduce the malicious path recognition 

rate (MPRR) as an evaluation index, which is the ratio of the number of correct paths connected by the inferred 

path nodes to the total number of malicious paths in the topology, it is expressed as follows (17). 

 
MPRR =

∑ Pi
n
i=1

∑ TMi
n
i=1

 
(17) 

Where i represents the category of malicious paths,n represents the total number of malicious path 

categories，Pi is the number of correct paths connected according to the inference results,  TMi is the total 

number of malicious paths. 

4.3 Online verification of reasoning functions based on knowledge base 

To verify the malicious behavior analysis capabilities of the constructed CSBKB framework, we simulate a 

scenario where a host with an IP address of  23.1.0.13 in the network layer DDoS attack domain launches 
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malicious user behavior and network layer DDoS attacks. Additionally, we select a host in the network layer 

DDoS attack domain as a forwarding node, a host in the botnet attack domain as a forwarding node, and another 

host as the victim. We also utilize two routers connected to these two domains and the traffic behavior base 

host as forwarding nodes. These nodes are highlighted explicitly with green boxes in Figure. 7. 

We test the knowledge base's graph construction, malicious behavior reasoning, and graph update functions. 

During online verification, the experimental environment provides a limited number of user nodes and network 

topology nodes. We only use a small amount of data for testing to demonstrate more precise results. 

4.3.1 Reasoning knowledge graph construction 

When malicious behavior is initiated, the data layer sends the collected data to the knowledge layer. The various 

knowledge bases in the knowledge layer construct three types of reasoning graphs based on the data: user 

behavior perception graph, malicious behavior association graph, and intra-domain attack graph.  

 

Figure. 8. Partial update of the user behavior perception graph 

The user behavior base receives user behavior data from the data layer and establishes connections between 

the monitored user (23.1.0.13) and other nodes. It stores the features of each user as attributes on the nodes, 

forming the user behavior perception graph illustrated in Figure. 8. This Graph provides the structure and user 

features required for reasoning in the malicious user behavior reasoning module.  

The traffic behavior base constructs each flow as an edge between two nodes based on the traffic behavior 

data sent by the data layer. Here, the flow of the host 23.1.0.13 has no label, so the name of the edge is " 

unknown. "  Figure. 9 shows the malicious behavior association graph. 

The initial topological information is stored in the attack behavior base. When malicious behavior is 

detected, the data layer transmits the node features with updated path state features to the attack behavior base. 

The attack behavior base then updates these features as attributes of the corresponding nodes, forming the intra-

domain attack graph depicted in Figure. 10. The right side of the Figure represents the path state features. 
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Figure. 9. Partial update of the malicious behavior association graph 

 

Figure. 10. Partial update of the domain attack graph 

4.3.2 Malicious behavior reasoning module runs 

 

Figure. 11. Malicious user behavior inference results 

The reasoning module employs the trained graph neural network model to perform inference, saving the 

predicted users, traffic types, and node path status labels into a "collection" file. The module subsequently 

updates the corresponding display class graph based on this file. 

Figure. 11 presents the results of the malicious user behavior reasoning. The confusion matrix indicates that 
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six malicious users were detected. Figure. 12 shows the results of the malicious behavior type reasoning, with 

the confusion matrix revealing that one application layer attack flow and fifty-four network-layer attack flow 

instances were correctly identified. Figure. 13 depicts the results of the malicious behavior path reasoning, 

where the confusion matrix indicates that we identified seven nodes participating in network layer DDoS 

attacks. 

 

Figure. 12. Malicious behavior type inference results 

 

Figure. 13. Malicious behavior path inference results 

4.3.3 Display knowledge graph update 

The reasoning results from the previous section are transmitted to the cyber security behavior knowledge base 

via the knowledge update interface and subsequently updated in the display class map of the knowledge base. 

Figure. 14 provides a partial view of the user behavior map, where the user with IP address 23.1.0.13 is 
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identified as an abnormal user by the reasoning module and is associated with the "abnormal" node, indicating 

the user's abnormal status.  

Figure. 15 illustrates a partial update of the malicious behavior category graph. The relationship between 

the flow node and the attack type is established based on the inferred flow type. As depicted in the Figure, the 

flow node associated with the IP address 23.1.0.13 points to the "NetworkDDoS" type, indicating that the 

verified traffic type belongs to a network layer DDoS attack. 

 

Figure. 14. Partial update of the user behavior mapping graph 

 

Figure. 15. Partial update of the malicious behavior category graph 

 

Figure. 16. Partial update of the malicious behavior path traceability graph 

Figure. 16 is a partial update of the malicious behavior path traceability graph. Below is a path formed by 

seven network layer DDoS path nodes, as indicated in the malicious behavior path inference results. The 

properties of a node in the path are queried, with the "flow" and "path_type" columns in the property bar on 
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the right displaying the source IP address, destination IP address, and path type of this attack path. This 

information indicates that the host with IP address 23.1.0.13 experienced the attack path. 

Based on the process outlined in Section 4.3 and the query results of the class graph, we have determined 

that the user with IP address 23.1.0.13 is abnormal. The attack launched by this user is identified as a network 

layer DDoS attack, and the path it traversed has been mapped. The entire process outlined above demonstrates 

the implementation of a comprehensive malicious behavior analysis mechanism, encompassing "malicious 

user behavior monitoring, malicious behavior type detection, and malicious behavior path tracing." 

4.4 Reasoning Model and Reasoning Effect Analysis 

4.4.1 Reasoning model parameter settings 

This study selected 10,000 user data records from the user behavior library, 20,000 traffic data records from 

the traffic behavior library, and 15,000 attack behavior data records from the attack behavior library for the 

experiments. The dataset was divided into training and validation sets in an 8:2 ratio. We employed a warm-

up strategy during the training process to adjust the learning rate dynamically, with the maximum learning rate 

set to 0.01. The other parameter settings of the training model [20,21,22] are in Table 10. 

Table 10. Parameter settings of the model 
Model Dropout Batch Rounds 

Malicious user behavior reasoning model 0.3 10 500 

Malicious behavior type reasoning model 0.2 20 500 

Malicious behavior path reasoning model 0.3 18 400 

4.4.2 Reasoning Model Effect 

 

Figure. 17. Prediction accuracy of network models with different numbers of layers 

The number of layers in a graph neural network is a crucial factor influencing the model's performance. To 

determine the optimal number of layers for ensuring efficient model reasoning, we maintained all other 

conditions constant except for the number of layers. We evaluated the prediction accuracy of the three 

reasoning models within the prototype system.    As depicted in Figure. 17, the results indicate that the graph 

convolution model and the graph attention model achieve their highest prediction accuracy of 0.97 and 0.98, 

respectively, with a network layer count of 2. The E-GraphSAGE model has the highest prediction accuracy 

of 0.97 when the network layer number is 3. 

Additionally, it was observed that increasing the number of layers results in a decline in accuracy beyond 

this optimal point. We may attribute this decline to the exponential increase in the number of neighbor nodes 

associated with each node, which interferes with the correlation between local nodes. Consequently, in 
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subsequent experiments, the chosen number of layers for the graph convolution, E-GraphSAGE, and graph 

attention models are 2, 3, and 2, respectively. 

Table 11. Model results 
Model Category Precision Recall F1 score 

Malicious Users 

Behavioral Reasoning 

Model 

Normal user 0.9735 0.9778 0.9756 

Unknown user 0.9510 0.9489 0.9499 

Abnormal user 0.9755 0.9733 0.9744 

 

 

Malicious behavior 

Type Reasoning 

Model 

Low-rate DDoS 0.9745 0.919 0.9460 

Normal traffic 0.9388 0.9537 0.9449 

Botnet DDoS 0.9418 0.9893 0.9650 

DRDoS 0.9901 1 0.9950 

Network layer DDoS 0.9990 1 0.9995 

Application layer DDoS 0.9798 0.9598 0.9697 

 

Malicious Behavior 

Path Reasoning 

Model 

Application layer DDoS 0.9775 0.9649 0.9712 

Normal traffic 0.9478 0.9562 0.9520 

Botnet DDoS 0.9513 0.9716 0.9613 

DRDoS 0.9867 0.9783 0.9825 

Network layer DDoS 0.9880 1 0.9940 

Low-rate DDoS 0.9734 0.9848 0.9791 

Based on the above model, we test the reasoning effect. Table 11 shows the specific results. 

The three indicators for various types of users in the malicious user behavior reasoning model all exceed 0.94. 

However, the indicators for unknown types of users are slightly lower than those for the other two types. We 

may attribute the cause to the feature patterns of unknown users, which lie between normal and abnormal users. 

When the boundaries between these patterns are not distinct, unknown users are more likely to be misclassified 

as normal or abnormal users. 

The three indicators in the malicious behavior type inference model are above 0.92. The precision and recall 

of normal traffic and low-rate DDoS are lower than other types. This discrepancy may be due to the relatively 

slow attack rate of low-rate DDoS, whose attack characteristics closely resemble normal traffic, leading to 

mutual misclassification. 

In the malicious behavior path reasoning model, the overall indicators for using the model to infer the attack 

path type to which a node in the topology belongs are all above 0.94, with no significant differences among 

the individual indicators. 

4.4.3 Comparison of Reasoning Methods 

In this section, we evaluated the reasoning methods of the three reasoning modules in the system and set 

different evaluation indicators based on the scenarios. We obtained the following results by taking the average 

after ten tests. 

 

Figure. 18. Comparison of Malicious User Behavior Reasoning Methods 
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To evaluate the monitoring effectiveness of the malicious user behavior reasoning module for detecting 

abnormal users, we compared our reasoning model with the method proposed in the literature [14], which uses 

a random forest (RF) approach to analyze user behavior and detect anomalies. Figure. 18 illustrates the results. 

Compared to the benchmark solution (Baseline), our approach demonstrates improvements in accuracy, 

malicious user recognition rate, and recognition time by 9%, 10%, and 12.7%, respectively. It proves that our 

solution is more effective in identifying potential abnormal users through reasoning based on user associations 

within the knowledge graph. 

 

Figure. 19. Comparison of malicious behavior type reasoning methods 

To verify the detection effectiveness of the malicious behavior inference module on traffic types, we evaluated 

the accuracy and two additional indicators: malicious traffic detection rate (DR) and (DC). Figure. 19 compares 

this paper's malicious behavior type inference scheme and the detection method utilizing E-GraphSAGE as 

proposed in the literature [20]. The quantitative results demonstrate that our method improves accuracy and 

malicious traffic detection rate by 5.4% and 4.3%, respectively, compared to the benchmark literature 

(Baseline). Moreover, our method's malicious traffic detection capability is more than 2.5 times that of the 

benchmark. We attribute these results to our method's ability to fully leverage the structured information and 

feature knowledge within the knowledge graph, thereby enhancing the model's reasoning capabilities. 

 

Figure. 20. Comparison of Malicious Behavior Path Reasoning Methods 

When comparing the effectiveness of malicious behavior path reasoning, we constructed domain attack 
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graphs with 100, 200, 300, 400, and 500 nodes in the attack behavior library for testing. The number of 

malicious paths in these five graphs was set to 4, 8, 12, 16, and 20, respectively, with each path involving six 

participating nodes. We compared our method with finding the attack path based on the node's threat degree 

using a greedy algorithm, as described in the literature [15] (Baseline). 

The results, shown in Figure. 20, indicate that our method consistently achieves a malicious path recognition 

rate above 0.92, demonstrating a higher and more stable recognition rate. Our method benefits from a broader 

knowledge scope as the topology size increases, resulting in improved malicious path recognition rates within 

topologies of 100 to 400 nodes. 

 

5 Conclusion 

This paper proposes a CSBKB framework for malicious behavior analysis, using DDoS attacks as a case study 

to demonstrate the construction of the CSBKB. The framework designs reasoning modules for the knowledge 

base using graph neural networks to address questions in malicious behavior analysis, such as "Who attacked 

me, in what way, and what is the attack path?" Experimental results indicate that the proposed knowledge base 

integration framework can effectively analyze malicious behavior, achieving an accuracy of over 0.97 in 

identifying abnormal users, over 0.97 in inferring DDoS attack types, and a malicious behavior path recognition 

rate above 0.92. 

We select several appropriate graph neural network models to design reasoning modules based on research 

needs and scenarios. It is important to note that these graph neural network models are not the only options 

available. As the research progresses, we will explore more efficient reasoning models and employ a 

combination of multiple algorithms to enhance system robustness. Additionally, improving the responsiveness 

and fluency of the knowledge base system in malicious behavior analysis is a vital issue to be addressed in 

future work.  
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