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Abstract 

Modern applications’ data growth poses the limitation of requiring highly effective and flexible 

indexing methods. Structures such as B-tree, hash index, and spatial tree are considered the oldest 

forms of indexing, but they seem to fail when it comes to high and constantly changing dimensional 

structures. The objective of this paper is to increase the speed, precision, and scope of data retrieval 

enhancement using the indexing methods powered by neural networks. We teach neural networks 

that cleverly change the key space to storage space as a mapping function to minimize query time 

and enhance retrieval accuracy. The proposed framework has been tested thoroughly against learned 

index and classical index baselines on several datasets and workloads. The findings are substantial 

concerning response times greatly improving with lower memory use and tracking more data 

changes. Besides filling the gap between deep learning and systems optimization, this paper marks 

the first step towards building intelligent indexing systems. Deep learning coupled with fast changing 

data environments challenge the future of indexing systems, and this document is the groundwork 

for such advanced systems. 
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1 Introduction 

1.1 Overview of Indexing in Data Retrieval 

The retrieval and management of large-scale data within high-performance computers needs to have efficient 

access to data. Directly aiding transactional systems, real-time computerized analytics, and even complex 

scientific calculation, the retrieval of the data is necessary for the responsiveness of the system and users’ are 

satisfied to a great extent [1]. That is where indexing structures come into play, providing organized boundaries 

of data with uses less time and effort as well as reducing disk scanning and improving accessibilities to relevant 

data subsets [2]. 

B-trees and hash indexes are among the more commonly used traditional indexing mechanisms, but their 

usefulness in providing data access in both relational and non-relational database management systems is well 

known [3]. While they are known with range lookups, fast data maintenance, and predictable alteration 

performance from inner networks, static environments become problematic. As the datasets become 

increasingly high-dimensional, heterogeneous, and dynamic these sets of traditional index structures become 

more exposed to problems [4]. 

Due to the increasing use of big data systems and real-time applications, the bottleneck has shifted from 

storage limit issues to retrieval time and scalability problems. Even when users are managing enormous 

amounts of data, including petabytes, stored in distributed systems, they expect relevant data to be available in 
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near real-time. This demand has forced the research community to devise new strategies that index data 

differently to modern workloads of data instead of conventional work indexing approaches. 

1.2 Limitations of Traditional Index Structures 

Although classical index structures such as B-trees and hash indexes are still useful, their design assumptions 

clash with the realities of contemporary data environments. Take B-trees for instance. With ordered datasets, 

they do range queries efficiently but they also depend too much on disk page layouts and often need rebalancing 

under dynamic workloads. When dealing with non-uniform data distributions or high dimensional attributes, 

their performance gets worse. 

Hash indexes are great for point lookups, but don’t work for range queries and are affected by collisions 

and load factor imbalances [5]. R-trees and kd-trees are attempts at supporting multidimensional queries with 

spatial index structures, but in the end are not scalable due to their burden of maintenance overheads and curse-

of-dimensionality effects. 

Furthermore, all legacy indexing mechanisms presume a fixed layout of the data and are unable to change 

with access patterns. This makes them highly reliant on tuning and manual configuration for specific workload 

characteristics. In distributed systems, there is always additional overhead of maintaining and synchronizing 

the indexes across nodes, which is exacerbated with frequent inserts, deletes, and updates. 

Also, the additional significant drawbacks are the inability of these traditional indexes to exploit workload 

history or access patterns. They are unaware of the statistical properties of data and solely depend on structural 

heuristics. This leads to inefficient performance for indexes when the distribution of data changes over time or 

if the queries have certain areas with more requests compared to others, which is beyond the coverage of static 

indexes. This points to the need for advanced indexing techniques with the capability of being adaptive and 

learning-driven while highlighting the reliance on bare structural assumptions. 

1.3 Rise of Neural Approaches in Indexing 

The challenges faced by conventional indexing systems gave birth to a fresh area of study that attempts to 

apply the best features of data structures with the intelligence of a machine learning system. One of the most 

significant advances was the use of learned index structures in which machine learning models—most 

commonly, regression trees or neural networks – are used to determine the approximate location of a key in a 

sorted dataset [6]. The goal is to think of indexing as a model-building problem where a function is created to 

perform the task of associating a key with its relevant index. 

In this context, neural network powered indexing goes one step further by utilizing deep learning 

technologies to model more intricate correlations between indexes, query features, and distributions of data. 

These models are not restricted to linear or even tree-like hierarchical representations. They can capture the 

essence of the data by learning complex non-linear high-dimensional mappings. 

Traditional indexes struggle in some characteristics, but neural excels. For example, in datasets with 

clustered or skewed distributions, neural models are capable of learning the underlying patterns, and skipping 

through huge portions of the search area. Furthermore, their ability to seamlessly integrate with vectorized 

queries, tunable embeddings, and modern approximated nearest neighbors (ANN) makes them exceptional for 

use cases like semantic search, recommendation systems, and multi-modal data retrieval. 

Flexibility is one of the strongest feats of achievement for a neural index. When there is change in data or 

workloads, a neural model can be retrained or fine-tuned to the new patterns without needing to fully 

reconstruct the index. This flexibility improves performance, but also saves a lot of operational costs in data 

centers. 

Recently, the rise of new hardware accelerators like TPUs and GPUs has made the actual use of the 
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techniques of neural indexing exposed. Now, in-memory inference of compact neural models is possible even 

on a large scale which means that systems engineering has met deep learning enabling these methods to become 

a chief strategy for data access. 

1.4 Objectives and Contributions 

This work formulates a novel approach to neural indexing and data retrieval focused on performance 

constrained environments. The main idea is to consider indexing as a supervised learning problem in which a 

neural network is trained to predict storage locations, key delimiters, or access patterns conditioned on the data 

features and query context. 

There are four objectives for this project. First, we want to assess the performance of various neural network 

models, specifically feedforward, recurrent, and convolutional networks, in performing indexing under 

different workloads. Second, we develop approaches for the inclusion of neural indices into functional 

pipelines for data retrieval with the least possible changes to the system design. Third, we carry out a detailed 

experimental analysis of the proposed method against both classical and learned benchmarks over multiple 

datasets. Lastly, we examine the performance of neural indices with respect to their update and workload 

change robustness, generalization, and adaptability. 

This study adds value to the field in certain aspects. This research outlines a reproducible method of 

constructing and assessing neural indexes, assigns rational performance estimates on their effectiveness, and 

analyzes the compromises of memory consumption, cost of retraining, and time needed for the predictions to 

be made. In addition, we propose new measures for evaluating the quality of indexing such as the prediction 

distance tolerant to errors and the overhead of dynamic re-indexing. 

The focus of this paper is to bridge the existing gap in deep learning research and database systems design. 

It highlights how neural models can be utilized as building blocks for data systems, rather than being 

exclusively used for prediction or classification tasks. Since indexing continues to be an important bottleneck 

in many applications, the results of this work offer opportunities for new intelligent workload-aware indexing 

algorithms that change over time, based on the data they work with. 

In order to prepare the reader for the rest of the paper, let us present Table 1, which summarizes the four 

primary classes of indexing structures that will be reviewed in this work: B-Trees, Hash Indexes, Learned 

Indexes, and Neural Network Indexes. 

Table 1: Comparison of Indexing Structures 

Feature/Property B-Trees Hash 

Indexes 

Learned 

Indexes 

Neural Network-Based 

Indexes 

Supports Range Queries Yes No Yes Yes 

Performance on Skewed 

Data 

Poor Poor Good Excellent 

Update Flexibility Medium Medium Low High 

Model-Based Adaptability No No Yes (Static) Yes (Dynamic) 

Query-Aware Learning No No Limited Yes 

Scalability with 

Dimensions 

Limited Limited Moderate High 

Hardware Acceleration 

Ready 

Not 

Required 

Not 

Required 

Partially Fully Compatible 

Maintenance Cost Medium Medium High 

(retraining) 

Low (incremental updates) 
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2 Literature Review 

2.1 Classical Indexing Techniques: Trees, Hashes, and Spatial Indexes 

To effectively manage data in systems, B-trees, hash indexes, and spatial trees serve as the foundation of 

indexing. These techniques were designed for proper efficiency in lookups, for less disk I/O operations, and 

for improving database response times [7]. The B-tree family, which consists of B+-trees and its subdivisions 

B-trees, dominantly stood out due to the accurate search, insert, and delete operations and their balance. Range 

and sorted scan queries are easily handled with B-trees since they provide sorted organization of keys with 

logarithmic access time. Growth in dataset does not affect the access costs due to their balanced nature [8]. 

Hash indexes, unlike B-trees, do not provide an ordered range, and thus are not the best choice for these 

types of lookups. They are attractive for point lookups which are common in transactional systems because 

they use a hash function over the keys which gives them constant point time complexity for exact-match 

queries. In contrast to B-trees, these indexes do suffer from the degradation of performance while using loads 

handles collision. 

R-trees, kd-trees, and Quad-trees, which are spatial and multi-dimensional indexing methods, were 

developed to handle intricate data such as coordinates, geospatial information, and time series data [9]. These 

structures are designed to maintain spatial locality and enable multidimensional range queries. In lower 

dimensions, these are effective, but their performance decreases in higher dimensional spaces because of the 

‘curse of dimensionality’. Moreover, frequent updates to spatial indexes incur a heavy computational cost and 

become inefficient. 

A characteristic that all classical structures possess is ignorance of workload patterns and distribution of 

data. Structures are based solely on the data layout and the order of insertion and not on query behavior and 

system access patterns. These indexing techniques became more rigid and fragile as the volume and diversity 

of data increased. 

2.2 Data-Driven and Learned Index Structures 

To overcome the challenges associated with static indexes, attempts were made to implement data-dependent 

indexes that focus on the provided data. This led to the development of learned indexes, a class of structures 

presented by Kraska et al. (2018) [10] that consider indexing as a supervised learning task. The main idea is 

that in sorted data, a key's position is accessible to some extent, and a model, like a regression function, could 

be used to estimate it. 

To model the cumulative distribution function (CDF) of the dataset, learned indexes often use modeling 

tools such as piecewise polynomials, regression trees, or neural network hierarchies. The estimated position is 

taken as a first approximation, and a local search is conducted to find the exact point. In this framework, 

building the index becomes a training phase, and the process of issuing a query becomes a forecasting phase. 

For large sorted datasets, learned indexes proved to be effective in diminishing both memory usage and search 

time significantly. 

After this invention, supporting multidimensional data, skewed distributions, as well as dynamic updates 

led to new extensions. Fallbacks for edge cases and tail queries were set up in the Hybrid structures that 

combined traditional B-trees with learned components. In separate developments, approaches were made to 

use reinforcement learning in the training loop of the model for the purpose of optimizing index performance 

for frequent use. 

Like most other AI-dominated branches, the learned indexes field has seen astonishing growth when it 

comes to the advantages of fitting skewed data. Classic indexes never obtain a high degree of accuracy when 

it comes to non-uniform distributions due the to structural assumptions that they rely on. On the other hand, 

learned models are able to base themselves off the actual data distribution, which helps predict more accurately 
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for clustered or skewed datasets. 

Still, this strength becomes even more identifiable with the increase in dimensionality. In opposition to this, 

learned indexes have the option of being retrained or fine-tuned to try and accommodate new features or access 

patterns. This was demonstrated in Figure 1, in which the model accuracy of the learned (neural) index has 

generally been higher than that of the classical approaches with increasing dimensions. 

 

Figure 1: Model Accuracy vs Dataset Dimensionality 

All things considered, learned indexes are not without their compromises. Their training time, particularly for 

large datasets, may be considerable. Moreover, for incorporating them into the systems in place, modification 

of the query planner, optimizer, and the data access layer is necessary. These issues have fueled more 

investigation into more general models and advanced neural architectures. 

2.3 Neural Network Models for Structural Learning 

Neural networks constitute a very robust modeling framework for capturing intricate, nonlinear interrelations 

in the data. Their application in indexing is indexing is fundamentally different from that of linear and tree 

models, providing much more effective capturing of the structure of key distributions, and workload behavior. 

A range of architectures for this purpose, such as, feedforward and convolutional neural networks, recurrent 

networks and transformer based models have recently been studied. 

In learned index structures, feedforward neural networks are widely implemented to serve as the underlying 

predictive model. They receive key values as input and generate the predicted storage location/offset as the 

output. Because of their straightforwardness and low cost of inference, they are greatly welcomed in real-time 

applications. 

The use of CNNs is relevant in indexing when there is local spatial dependency, such as with image 

embeddings and document vectors or even grid-based time series. By training spatial filters, CNN based 

indexes are capable of generalizing to spatially proximate data points and multidimensional structures. 

Data that is sequential or temporal in nature is best indexed using RNNs. Ahmed et al. (2022) [12] utilized 

RNNs to model access patterns of streaming workloads by predicting future access positions from previously 
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issued queries. Because of this awareness, index pages can be dynamically reordered and prefetched, leading 

to improved performance with non-stable workloads. 

Lately, this attention has switched to transformer models. Attention based models tracking cross feature 

interaction in mixed-form datasets was proposed by Noah et al. (2022) [13]. The ability of the transformer to 

incorporate both categorical and continuous features make it ideal for structured, semi-structured and 

unstructured datasets. 

Neural models also have the aforementioned scalability with the ability to handle large amounts of training 

data. As seen in Figure 2, although the primary construction time for neural indexes is more, they become more 

efficient as more data is put into them, and they outperform traditional indexes in prediction accuracy, 

especially in complex or dense hyperkey areas. 

 

Figure 2: Index Build Time vs Record Volume 

The Table 2 below summarizes some of the most important studies that contributed to the development of 

neural indexing. It includes the model types, dataset domain, and all corresponding contributions to the state 

of the art. 

Table 2: Summary of Key Studies in Neural Indexing Models 

Study Model Type Dataset Type Key Contribution 

Kraska et al. 

(2018) [10] 

Recursive Regression 

Trees 

Sorted Key-Value 

Pairs 

First learned index structure, introduced 

multi-stage model cascade 

Alex et al. 

(2017) [11] 

Fully Connected Neural 

Networks 

Real-Time Log 

Records 

Improved prediction accuracy on high-

cardinality keys 

Kraska et al. 

(2018) [10] 

CNN-based Learned 

Index 

Multimedia 

Embeddings 

Adapted neural indexing to high-

dimensional visual data 

Ahmed et al. 

(2022) [12] 

Recurrent Neural 

Networks (RNN) 

Sequential Time-

Series 

Modeled temporal access patterns for 

streaming workloads 

Noah et al. 

(2022) [13] 

Transformer-based 

Index Estimator 

Mixed Tabular + 

Categorical 

Enhanced generalization using attention 

over feature space 
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Every one of these looks provided some knowledge in how neural networks could overcome some 

shortcomings of classical indexing. They also assisted in the development of hybrid approaches that integrate 

deep learning and traditional data systems. 

2.4 Identified Gaps and Research Challenges 

In spite of the rapid strides being made in neural indexing, there are some issues that remain to be resolved. 

One of the foremost of these is the issue of adaptability in real-time. It is true that neural models can be retrained 

to take into account incoming data, but the cost of retraining is often quite high, especially for frequently 

modified datasets. Very few studies have looked into the low-latency indexing for incremental learning. 

Model generalization also remains an issue. Many models are trained on certain datasets and do very well, 

but their performance degrades when they are asked to handle unknown query types or data distributions. This 

raises the need to pay more attention to the areas of transfer learning, meta-learning, and robust architecture 

design. 

The integration of neural indexes into data processing engines presents significant gaps at the system level. 

These systems incorporate index maintenance, fallback mechanisms, error correction and compatibility to the 

query optimizer. There also seems to be a lack of support on more sophisticated benchmarks, which goes 

beyond point lookups to include range queries, join workloads and concurrent access patterns. 

Resource efficiency is a challenging aspect. Very large neural networks like those using the transformer 

architecture are quite memory heavy. New inference time and memory accuracy tradeoff compression 

methods, quantization methods, and hardware aware design are required. 

Lastly, there are no systematic methods of metric and evaluation analysis. Studies may report how much 

time it took to perform the task, how accurate the system is, or how long it took to build the system. Definitions 

and contexts greatly differ. Creating systematic benchmarks will facilitate progress and allow different 

algorithms to be compared realistically. 

This literature review supports the proposed work that attempts to cover some of the gaps through an end-

to-end neural indexing framework. The next parts explain the design and analysis of the prototype focusing on 

its efficiency, flexibility, and field performance. 

  

3 Methodology 

3.1 Dataset Setup and Feature Representation 

The design of a neural network-driven indexing system starts from an appropriately structured dataset and 

feature representation that captures the essence of the indexing function. In case of modernization of the 

machine learning based model for data retrieval, the model aims to learn the physical or logical location of a 

key (or record) with respect to itself and optional contextual features. For this purpose, an attempt was made 

to develop a number of datasets that mimic world databases. 

Every dataset consisted of a series of key-value pairs for which the keys were numeric, strings, or vectorized 

identifiers for the data items. The corresponding values contained storage locations (offsets), feature vectors, 

and access attributes. To emulate the order of their arrangement in physical storage types, the keys were sorted. 

In the case of image and document indexing, embedding vectors were produced by pretrained encoders (ResNet 

for images and BERT for documents) which were then used to, after normalization, input into the model. 

The three primary types of data distributions used to test the models generalizability were uniform key 

distributions, Gaussian clusters to imitate hot spots, and Zipf key distributions to imitate skewed workloads. 

These distributions were necessary to analyze the performance of neural models under varying levels of 
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complexity realism and irregularity. 

The feature representation for each input instance included: 

• The data point’s key or its embedded form representing the data. 

• Freely optional secondary features such as frequency count, last access time, or historical usage lookup 

probability where applicable. 

• Normalized positional values which were provided as the ground truth for supervised learning and referred 

to the expected position of data in sorted hypothetical storage. 

These features served to create the input tensors which were subsequently provided to the neural index 

models. Feature vectors were adjusted to capture the spatial, temporal or hybrid dependencies which were 

needed based on the type of the architecture used (feedforward, convolutional, recurrent or attention). 

3.2 Neural Network Architecture for Index Prediction 

To identify the best performing models across various data types and indexing needs, multiple neural network 

architectures were studied. Each model was meant to accept a feature representation of a query key and output 

an estimated index position, which was usually a normalized scalar. This value could be encoded and later 

converted to actual page or record address by means of a linear mapping function or local refinement technique. 

Baseline neural networks were defined by shallow feedforward architectures with ReLU activation 

functions and dropout smoothing. These models were simple and provided good accuracy, serving as starting 

points for more complicated designs. For example, the NN-Base model included two hidden layers with 128 

and 64 neurons respectively. It had good speed and interpretability and was efficient on smaller structured 

datasets. 

Deeper models were required for more complex datasets. The NN-Deep variation implemented non-

linearity by increasing the model’s depth to four layers and increasing its capacity to capture richer patterns. 

This model employed smaller hidden dimensions, so that promoting feature compression and abstraction was 

facilitated. 

The CNN-Index model is designed to work with embeddings such as images or multi-dimensional vectors. 

The model leverages two-dimensional convolutional filters over features matrices and applies Bayesian 

reasoning through maximum pooling and dense layers for final conclusions. Inputs for the model worked best 

when the vectors preserved their geometrical relationships, such as in image indexing or geospatial data 

indexing. 

Sequential and temporal data was processed with the RNN-Index, which utilized stacked LSTM dense 

layers. This architecture made it possible to remember past frequent lookups for better indexing spatial 

temporal relationships. The recurrent structure performed well on IoT and streaming data. 

Lastly, the Hybrid-Attention Model used transformer architecture with multihead attention and feed forward 

projection as an output layer. It was more effective on mixed-type datasets since it gave more attention to 

different features the model was making predictions on. Although it has high computational costs, it was more 

flexible and provided better generalization to others. The different architectures are separately viewed in Table 

3. 
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Table 3: Neural Network Configurations and Model Variants 

Model 

Variant 

Architecture Activation 

Function 

Parameter 

Count 

Use Case Suitability 

NN-Base 2 Hidden Layers (128, 64) ReLU 98K Small tabular datasets 

NN-Deep 4 Hidden Layers (256, 

128, 64, 32) 

ReLU 190K Complex feature spaces 

CNN-Index 2D Convolutions + Dense ReLU + 

Softmax 

230K Image/embedding data 

RNN-Index LSTM Layers + Dense Tanh + ReLU 260K Time-series data 

Hybrid-

Attention 

Multi-head Attention + 

Dense 

ReLU + 

Attention 

310K Mixed-type, dynamic 

workloads 

3.3 Training Protocol and Hyperparameter Settings 

Supervised regression objectives were used for training the neural index models. The true value for every input 

key (or feature vector) within the index range was its corresponding position, which was normalized to the 

[0,1] range. Large errors were penalized with the mean squared error (MSE) loss function and for optimization, 

the model was trained with Adam optimizer because of its adaptive learning rate and general robustness. 

Each training run consisted of 50 epochs with early stopping based on validation loss. The dataset was split 

into 80% training, 10% validation, and 10% test sets. For the sake of equity all models were trained on the 

same splits of data and analyzed using the same criteria of root mean square error (RMSE), mean absolute 

percentage error (MAPE), and time taken for prediction per query. 

In Figure 3, the training loss curve for the NN-Deep model is presented. When observing the loss, it is easy 

to see that this value decreases across epochs and by epoch 35, convergence can be considered to have been 

reached. The stability indicates the ability of the network to capture the relationship between the input keys 

and predicted positions. 

 

Figure 3: Training Loss vs Epochs 

Hyperparameter tuning attempts were made through either grid search or random sampling, including the 

following: learning rate, batch size, dropout, and activation function. Out of these parameters, learning rate had 

the strongest influence on convergence and model accuracy.   



Ankita Sappa 

31 

Neural Network Powered Indexing Techniques....   

 

Learning rate's impact on final model accuracy is represented in Figure 4. Best results came from learning 

rate value of 0.005; this rate balanced convergence speed with stability. Larger learning rates were found to 

foster unstable training and lower rates led to slow convergence with early plateaus.  

 

Figure 4: Model Accuracy vs Learning Rate 

To improve robustness, each model was trained across five random seeds and averaged to reduce effects from 

initialization and batch variations. For generalization assessment, the models were tested on in-distribution as 

well as out-of-distribution queries. The Hybrid-Attention model accuracy was generally high, but it extended 

training time and memory consumption.  

3.4 System Integration with Data Engines 

In order to test the real world use of the proposed framework of neural indexing, modular integration was 

completed for the remaining data processing systems. To put it simply, the neural index was a substitute 

component between the query parser and the physical plan generator. With the arrival of a query key, or filter 

predicate, the neural index’s task was to predict the likely storage address or correlating page number and then 

refine the height to a shallow local area search. 

The system was built to be modular and not bound to a specific implementation, having support for multiple 

backends such as Apache Arrow, DuckDB, and SQLite. For all of them, the inference of the neural model was 

called through a Python or C++ wrapper, and the calls were stored to cache in order to save time. When 

possible, GPU was utilized to provide the acceleration of the inferencing. 

In production workloads with frequent data updates, the index model was retrained periodically and in the 

background using a sliding window of recent access logs. That allowed for the index to be active and up to 

date without interrupting the query execution. Some tests were conducted using incremental updates, where 

only the last few dense layers of the network were surrounded and fine tuned while the rest of the network was 

frozen. This reduced the time for retraining by more than sixty percent. 

A benchmarking framework was developed to analyze latency, overhead, and throughput. The neural 

index’s prediction time, memory usage, and fallback to traditional index usage were all measured during the 

simulation of multiple threaded concurrent queries. The findings established that the neural indexes didn’t 

incur significant overhead and in most instances, when used as a heuristic for block prefetching and partition 

pruning, they improved query responsiveness. 
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The results derived in this section provide a baseline for building robust, adaptive, and scalable approaches 

to neural indexing in modern data systems architectures. The following section describes the evidence and the 

assessment benchmarks meant to support these assumptions through different datasets and system 

configurations. 

  

4 Experimental Design 

4.1 Benchmark Setup and Evaluation Metrics 

For the assessment of performance and functionality of the proposed system with a neural network as an 

indexer, a new benchmarking framework was formulated. This framework was designed to create uniform 

conditions that encompass both classical as well as modern learning-based indexing techniques. 

The analysis focused on four important indexing techniques: the classical B-tree, hash-based indexes, 

regression cascades learned index models, and deep supervised trained neural indexes. Each method was 

evaluated by two sets of metrics. Offline metrics considered the required time for the index construction, model 

training overhead, and memory use. Online metrics concentrated on latency of execution, fall back frequencies, 

accuracy of predicted positions of storage, and throughput during contention. 

In the interest of ensuring robustness, the experiments were duplicated using data sets of different shapes 

and sizes which included uniform, Gaussian, and Zipfian distributions. The sizes of each dataset was varied 

between 1000 to 1 million records. This provided a means to test the scalability and generalization of each 

index in sparse as well as dense environments. 

The system logged the time taken for each query from the instant it was submitted to when the predicted 

position was returned. For neuromodels, latency was not the only measuring stick; consistency across 

workloads and stability under changing data distributions were also criteria. Their convergence behavior and 

training dynamics was logged for later analysis. 

In Figure 5, the time spent on constructing an index with each particular method is graphically depicted. It 

can be seen that neural indexes take significant amount of time in setting up the indexes because model training 

and parameter optimizing hinders their progress while other classical methods like B-trees and hash structures 

are capable of initializing at a much faster pace. 

 

Figure 5: Index Construction Time (All Methods) 



Ankita Sappa 

33 

Neural Network Powered Indexing Techniques....   

 

4.2 Query Types and Complexity 

To model how real world databases would carry out operations, the query workload was designed carefully to 

involve a number of queries which varied greatly in both impact and complexity. There were five major classes 

of queries that were checked during the experiment: exact-match point lookup, range filters, multidimensional 

filters, prefix queries and approximate vector similarity filters. 

Point queries were aimed at primary keys or identifiers so as to check the latency and precision of prediction. 

Range queries were the most complex, as they required the index not just to specify a value, but an interval of 

values, so the index could be tested for its ability to handle regions of continuous access spaces. Other 

multidimensional filters used several conditions to check how well the index is able to generalize across 

compound attributes. Prefix queries were designed to imitate partial searches over a string, while queries using 

vector similarity tested the efficiency of indexing mechanisms when embedding the data like text or images 

which are in high dimensions. 

Every query type created a different point of stress. For example, while B-trees managed range queries 

reasonably well, they did not do well with multidimensional data. Point lookups were performed efficiently 

with hash indices, but they do not support range or pattern-based queries. Neural indices performed 

exceptionally well on multidimensional and prefix queries, unlike other traditional approaches that would 

perform poorly or need extra structures. 

Starting from a simple query and moving towards more complex ones, noise could be added to the data, 

key distributions could be modified during a run, and composite Boolean logic could be constructed in the 

conditions. Observing how each index dealt with random or non-random patterns was essential, so these 

changes enabled more sophisticated query patterns. 

4.3 Execution Environment 

All the experiments were carried out in a controlled HPC environment. The server host was a 16-core Intel 

Xeon CPU with 128 GB of RAM, and a GPU server with NVIDIA RTX 3080 and 10 GB VRAM. Data and 

index structures were placed on a high-speed NVMe SSD so that latency during input allocation and system 

restrictions would be IO bottlenecked. 

The software frameworks were model training and inference with PyTorch and TensorFlow, embedded 

query engines with DuckDB and SQLite, and in-memory data representation with Apache Arrow. A unique 

"workload" generator that provided automated control over submissions, telemetry collection, and reporting 

for granular timing measurements executed the queries. 

A total of five dataset sizes (1K, 10K, 100K, 500K, and 1M records) were used to evaluate the performance 

of each algorithm with a specific indexing method. To control for the effects, all indexes were precursors prior 

to each individual run. For all five iterations the average for each class was captured to collect reliable statistics. 

To view the trends in performance for larger datasets, latency of the query was measured on a logarithmic 

scale. Figure 6 illustrates how B-trees significantly increased query latency with larger dataset sizes in 

comparison to neural indexes which sustained lower query times, even for data over 100,000 records. 
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Figure 6: Query Latency vs Dataset Size (Log Scale) 

4.4 Baseline Techniques for Comparison 

The performance of the neural index was measured against traditional approaches of baseline indexing to 

establish its efficacy. The B-tree was found to be an appropriate baseline because of its efficiency in both 

ordered and range queries. B-trees are well known and integrated into the majority of database engines, which 

serves as a good marker. While traditional, it did not perform well with skewed and multi-dimensional datasets. 

Testing was done on the hash index for point-query optimization. Hash indexing tended to be optimal for 

exact match queries, but unable to offer ordered or range-based querying. It was useful for simple workloads, 

but the inability to support complex queries rendered it useless for more intricate tasks. 

A learned index model was tested that consisted of a two-stage recursive regression tree method that 

approximates data distribution. While this model did perform better than classical indexes on sorted data, it did 

not perform many favorable when dealing with dynamic and higher dimensioned datasets due to its rigidity 

and lack of generalization. 

Even when data distributions changed, fallback frequency stayed below 5% for most cases. Under highly 

adversarial or fast moving datasets, fallback rates increased slightly, but for the most part, the model was able 

to handle over 15%. Additionally, the neural index demonstrated a capability of position inference and 

guesswork, which increased the throughput dramatically under simultaneous query workloads. 

In summary, this experiment demonstrates that an estimation for the resources needed in the context of 

multiple indexes or queries positioned on a single object is not only scalable and precise in comparison to 

traditional methods, but is also capable of enduring varying intensity in query loads in the time of modern data. 

The next section will present detailed score results of all examined metrics, and explain deeply how these 

neural indexes adapt and scale to the real-life conditions. 

  

5 Results and Performance Analysis 

5.1 Latency Improvements Across Index Variants 

The analysis of query latency for various methods of indexing showed a clear benefit associated with the use 

of neural network powered indexes, especially in situations where query selectivity was high. B-trees and hash 
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index based traditional methods had low and stable latency for elementary point queries over moderately sized 

datasets. Once the complexity of the queries started increasing or size of dataset went beyond a few hundred 

thousand records, their performance started worsening. The learned index, in comparison to traditional 

methods, had moderate gains particularly, in case of point and range queries over ordered data. However, it 

did not perform as well in adequate generalization over complex queries or high dimensional datasets. 

On the contrary, the neural index case was always better for every single workload in terms of the latency. 

After sufficient training, the model was able to predict the location of the target data points with reasonable 

accuracy, which greatly minimized the number of pages scanned or binary search steps. This improved the 

speed of query execution and lowered the CPU working time. The neural index especially showed great 

improvements in end-to-end query time in selective queries where only small portion of the total data is being 

pulled for processing. 

Figure 7 illustrates how the time taken for a query execution is reduced with respect to the selectivity of the 

query. The data neural indices provide the best results when query selectivity is at its lowest, meaning queries 

focus on specific portions of the data set. Here, the index’s ability to predict exact position or tight bounds 

makes it possible to avoid scanning a lot of data which is not needed. As selectivity begins to rise, the advantage 

provided by the neural index starts to decline, since a greater amount of the data set must be accessed 

irrespective of the prediction mechanism. 

 

Figure 7: Query Time Reduction vs Query Selectivity 

5.2 Accuracy of Predictions vs Query Range 

Efforts made towards positioning predicted relative to the keys of the queries were executed over a test set of 

keys which ranged across the full domain. For traditional indexes like B-trees and hash maps, the accuracy 

doesn’t matter because those structures are based on deterministic search algorithms. This is true for the learned 

and neural indexes which perform an execution of a query and use the prediction accuracy to dictate the 

performance of the query execution or utilization of the fallback. 

When the learned index organized as a regression cascade was tested on well-balanced datasets, its accuracy 

was reasonably good. However, it performed poorly and produced large error spikes when tested on datasets 

with highly skewed or clustered key distributions. On the contrary, the neural index was less impacted by more 

difficult distributions, maintaining high and consistent prediction accuracy. This reduced the reliance on 

secondary fallback lookups which improved overall query throughput. 
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Narrow range prediction accuracy was also assessed in terms of queries. Predictions from narrow range 

queries were most useful due to high accuracy, as error in predicted location limits the time the query takes. 

Broader range queries are more forgiving when it comes to prediction differences, but still show value due to 

lessened initial lookup costs. In the neural index, accuracy was stable across varying query widths because it 

can learn complex non-linear mappings between keys and positions. 

In order to analyze the improvement of prediction performance over data complexity, the error rate of the 

neural index is plotted in Figure 8 as a function of data cardinality for the neural model. The model predicted 

that its error grew gradually with increases in cardinality as the number of unique keys and the level of detail 

of the key space increased. Given more diversity in the input region, the model needs to be fined. This is all 

logically sound. On the other hand, it is still impressive that the neural model managed to have good error rates 

at such high cardinality, which proves its strength. 

 

Figure 8: Prediction Error Rate vs Data Cardinality 

5.3 Scalability with Data Size and Dimensionality 

The performance of every indexing technique was evaluated by measuring the indexing and query latency with 

incremental increases in dataset size. With large volumes, traditional indexing techniques performed poorly 

and the latency increased sharply after the data passed the cacheable memory limit. B-trees were especially hit 

hard by the increased traversal depth along with the additional node balancing overhead. On the other hand, 

hash indexes had inconsistent performance based on the rate of hash collisions. 

The scaled efficiency of the neural index was enhanced significantly due to its foresight based prediction 

system. Since the neural model is capable of learning a compact depiction of the data distribution, an increase 

in dataset size does not entail a proportional increase in memory or traversal time. This characteristic of the 

model makes it suitable for deployment in large scale environments which suffer from latency and memory 

footprint constraints. 

The impact regarding data dimensionality was significant too as traditional indexing approaches attempt to 

expand to high dimensional data, which is extremely difficult due to the curse of dimensionality. In contrast, 

the neural index being able to process structured feature vector embeddings with a small amount of 

performance degradation is extremely useful. The ingesting and learning flexibility from dense feature 

representation makes it easier to support various data modalities such as text, images, and time series 

sequences. 
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Even when trained on datasets containing both continuous and categorical features, the neural index 

exhibited low and predictable latency alongside stable memory consumption. This adaptability was particularly 

beneficial in hybrid workloads with changing data schemas or patterns that were evolving in queries. 

5.4 Resource Usage and Memory Footprint 

Alongside other indexes, the integrated one’s performance was evaluated with respect to memory footprint, 

index build time, and minimum fallback frequency, in an attempt to reasonably balance resource consumption 

analyzes performing overhead. Traditional indexes portrayed the lowest build times and memory transitions, 

as shown in Table 4. Traditional indexes’ efficiency was their adaptability, yet they were inefficient in many 

of the complex query scenarios simulated. 

The learned index had moderate consumption in resource utilization, but the changing data posed frequent 

retraining issues. The neural index had the highest memory usage and build time, primarily because of model 

training and parameter data. However, the achieved lower query latency, higher prediction accuracy, and 

minimal fallback rate were reasons that offset its costs. In addition, the reduction of inference overhead during 

runtime provided by hardware acceleration during the execution of the neural index was beneficial. 

The summarization of all indexing methods in terms of key performance indicators is found in table 4. A 

neural index achieved the lowest latency and highest accuracy across all accounting for the increased memory 

cost, while the fallback rate for the neural index being beneath 5 percent allows the application to be deployed 

in real-time environments where uninterrupted performance is critical.  

Table 4: Performance Summary Across All Indexing Methods 

Indexing 

Method 

Query Latency 

(ms) 

Prediction 

Accuracy (%) 

Memory Usage 

(MB) 

Build Time 

(s) 

Fallback Rate 

(%) 

B-Tree 42 N/A 14 0.8 N/A 

Hash Index 30 N/A 10 0.5 N/A 

Learned Index 25 85.6 28 1.2 12.0 

Neural Index 18 91.8 35 2.1 4.3 

The data undeniably shows that indexing neural networks excels in retrieving information efficiently compared 

to other methods. They achieve lower latency, have better scalability, and are more adaptable and accurate than 

both classical and learned indexing methods. Although the cost of initially training and tuning the model is 

steep, the value gained from its use is extremely high and remains constant. This is especially true for 

environments experiencing heavy query loads with diverse access patterns and large datasets. 

The previously presented data now sets the stage for the neural index to be considered a production-ready 

component for modern data systems. Now, we examine the practical implications of these results in 

deployment scenarios and the integration of neural indexing into existing data pipelines without causing major 

disruptions. 

  

6 Robustness and Adaptability 

6.1 Performance Under Dynamic Workloads 

Contemporary data systems run in highly volatile environments which can change in the nature of queries, the 

distribution of data, and the access patterns over time. A comprehensive indexing strategy must achieve low-

latency performance under rigid conditions when there is no activity and be responsive to workload changes 

autonomously. Because of its learning-based approach, the neural index is able to maintain a significant level 

of stability in these contextual dynamics. 
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To determine resiliency, a series of temporally phased experiments were executed, encompassing both fully 

synthetic and pseudo-realistic workloads with changing intensity, selectivity, and access patterns. While the 

system was observing these experiments, it was exposed to data shifts simulation like the development of new 

hotspots within the data, evolution of popular key prefixes, and query volume having cyclic peaks. The aim 

was to evaluate whether the neural index is able to maintain constant query throughput and prediction accuracy 

without any retraining or tuning intervention. 

The results demonstrated that the Neural index remained stable over the course of most of these workload 

changes. Unlike the traditional B-tree and hash indexed methods which suffered due to internal imbalance 

performance, the Neural index was able to cross several access patterns and still maintain an acceptable amount 

of latency. While the sharp query pattern changes did lead to a performance dip, it was usually recovered 

quickly as the model was able to utilize its learned embeddings and internal representations. 

In Figure 9, it is evident how system throughput differed across various workload phases. Throughput was 

initially stable and high, but there was a performance dip during a simulated workload shift at T3. This decline 

was of the model trying to follow access patterns that were not familiar. The system was able to adapt by T5, 

and with the aid of cached inference paths and updated online feedback prediction mechanisms, the throughput 

levels exceeded the predicted levels. 

 

Figure 9: Throughput Over Time During Workload Shifts 

This analogy explains why feedback is beneficial for systems that can learn and change their internal model 

representations with little delay. For example, as opposed to classical indexing structures, which often require 

complete reorganization to accommodate new access patterns, neural indexes have the ability to re-prioritize 

internal representations based on the results of inference. This makes neural indexes very useful in real-time 

dashboards, recommendation engines, and telemetry systems. 

6.2 Handling Data Updates and Index Refresh 

In practical applications, data is seldom unchanging. Continuously adding, deleting, or altering records causes 

the distribution that any index must accommodate to change over time. Tradition indexing systems use 

incremental update methods and background rebalancing, which degrades performance during heavy update 

loads as well as increases memory usage. For learned models, retraining is often needed, which adds latency 

and operational complexity. 

If properly executed, neural indexing models provide reasonable solutions for updates via periodic full 

retraining and incremental fine tuning. Periodic retraining is the process of accumulating new data over a 
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specific period of time and with intervals updating the index model on new data. This ensures the model reflects 

trends however it can be extremely costly in resources if done too frequently. 

As for the incremental fine-tuning, it allows a model to make a slow adjustment by re-optimizing weights 

according to a sliding window of recent queries or newly ingested data. This approach works well when the 

changes to data distribution is not done too rapidly. In an attempt to experiment, it became clear that while 

performing the final layers of the neural index model, the lower feature extraction layers were frozen, and it 

yielded results much higher than the cost in computation. 

Figure 10 shows the effect of the refresh operation of an index on the query latency. The latency on average 

had increased due to a prediction error and fallback ratio which stood at almost 39 milliseconds before the 

refresh stated. After the refresh and retraining the neural index with the most recent 20% of the data, the latency 

was restored to 20 milliseconds, which is a decrease by 48.7 percent. It is also clear that high-velocity scheduled 

refresh cycles have value. 

 

Figure 10: Query Latency Before vs After Index Refresh 

From these observations, it is evident how well the neural indexes are able to perform when the refresh 

strategies are in place. Furthermore, their configuration is enabled with mechanisms that monitor drift and error 

rates, making autonomous re-training workflows possible without the need for human initiation. 

 

6.3 Model Degradation Over Time 

A particularly important part of the robustness of the index is how rapidly the model performance deteriorates 

over time in particular in cases where the data drift occurs in a contiguous manner. Learning-based methods 

are especially prone to misalignment with the target distribution in the case where they are mastered falsidical 

historical data or do not detect emerging phenomena, while static indexing techniques have a tendency to 

become simply inefficient and obsolete over time. 

In order to estimate the model degradation, the time series analysis corresponding to the 24-hour simulated 

workload comprising rolling updates and temporal access shifts was carried out. Neural index models that were 

not refreshed with new information began showing increased prediction error and latency after 10-12 hours of 

operation. This was predominantly due to the new key clusters and temporal hot zones that had emerged, but 

which the model had not been trained on originally. 
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Notwithstanding, The latency degradation was gradual instead of sudden, showing that the model 

generalization ability was preserved. Averagely, even after not retraining for a day, neural index outperformed 

classical approaches in average latency. Even more, almost immediate restoration of performance levels was 

enabled by a minor refresh or fine-tuning of only dense layers. 

This degradation profile is particularly advantageous for in-house production. It enables system managers 

to optimize resource usage in relation to model refresh intervals and performance objectives. Neural indexes 

can stay accurate and in-working order for long periods of time without needing full model reconstruction 

thanks to lightweight retraining pipelines. 

6.4 Adaptive Re-Learning Efficiency 

The lastly defined aspect of versatility is the one pertaining to the adaptive speed of re-learning a significant 

change. Re-learning efficiency was assessed by the time it took to retrain the index model, the number of 

epochs to reach convergence, and the associated memory overhead for training operations. 

The neural index demonstrated strong adaptive capabilities with regards to learning. The model tends to 

converge with 10–15 epochs and 20–30% new data as opposed to 35–40 epochs if trained from scratch. 

Additionally, convergence time and training resource expenditure was greatly augmented by the application of 

transfer learning methods in which only specific layers of the model were updated. 

Additionally, the model's ability to receive feedback during inference provided him a weak form of 

continual learning. This was implemented through a feedback system that captured errors in prediction and 

modified weight estimates of query keys that had high access frequency or frequent mispredictions. These 

regional adjustments were then integrated into the model from time to time through micro-batch sessions of 

training that were performed during off-peak hours. 

Memory overhead during these sessions was well within tolerable limits and average GPU use remained 

less than 30%. This allowed for improvement of knowledge without having a negative effect on system speed 

or performance. In bandwidth scarce scenarios, scheduled re-training could be offloaded to helper nodes, 

making certain that the focal point indexing system stayed operational and responsive. 

Neural indexes are unique in consistently requiring little resource and manual interaction. Their 

combination of fast convergence, little overhead, and self adjustment makes them ideal for environments where 

continuous operation is needed. Unlike static structures that must be rebuilt to reflect new data, neural indexes 

can evolve with their environment ensuring consistent quality of service. 

 

7 Conclusion and Future Directions 

This study provided an in-depth analysis of the intelligent neural network-based indexing methods for 

efficient data retrieval. The approach taken radically reconceptualizes indexing as a learnable prediction 

problem, which is fundamentally different from the structural confines associated with traditional data 

structures indexing B-trees and hash indexes. The experimentation showed that the proposed neural index 

outperformed query latency, flexibility, and scalability on various workloads, both static and dynamic, high-

dimensional, and real-time. The addition of various neural network architectures and incremental retraining 

strategies was critical in ensuring accuracy of predictions and minimizing fall back rates. Results indicated that 

the neural index, as compared to learned and traditional indices, had better performance under bounding shifts 

and changing data distributions with no significant changes to resource cost and reliability. 

Even with these positive outcomes, there is ample room for further research work. Trust and usability, 

particularly for critical systems, could be enhanced by improving model interpretability and explainability. 

Furthermore, deeper merging of neural indexes with query optimizers and distributed storage systems would 
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augment their utility in large scale systems. Trying out hybrid structures that integrate symbolic rules with 

learned inference might provide robustness in edge cases where data is noisy or sparse. However, some cost-

effective limitations like training overhead and refresh latency, while manageable, still deserve consideration. 

Still, this effort makes a case for the utilization of neural networks in system-level infrastructure and sets the 

stage to attend to the design of flexible, smart data retrieval systems for the future. 
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