
42 

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 11, Article No. 03 (March 11, 2025) DOI: 

https://doi.org/10.69978/rebicte.v11i.211 

Reinforcement Learning Based Optimization of Query 

Execution Plans in Distributed Databases  

Srikanth Reddy Keshireddy 

Senior Software Engineer, Keen Info Tek Inc., United States  

   Email: sreek.278@gmail.com  

 
Received: November 26, 2024; Revised: January 13, 2025; Accepted: February 21, 2025; Published: March 11, 2025 

 
 

Abstract 

Troublesome workloads, data heterogeneity, and shifting resource conditions make efficient query 

execution highly difficult to achieve in distributed database systems. Traditional optimizers will 

almost always rely on handcrafted methods or static cost models to achieve the desired results, 

resulting in adaptative failures along the way and serving at best subpar query execution plans 

(QEPs). This paper presents a new architecture meant to optimize QEPs by utilizing deep policy 

reinforcement learning (RL) for dynamically shifting execution strategy adaptations over distributed 

nodes. The proposed model considers and structures the optimization problem as a Markov Decision 

Process (MDP) with states available in the form of system and query profiles, actions available being 

the choices of QEPs, and the rewards acting as a mere performance measurement for execution. We 

analyze this approach with different combinations of queries and nodes through benchmark datasets 

and simulated environments. The objective of this evaluation is to test the model’s performance in 

regards to differing query kinds and node configurations. The experiments indicate remarkable 

advances in system throughput and execution time while achieving strong generalization to 

unfamiliar queries. These results support the hypothesized ability of query processing in future 

distributed databases to not have suggestion mechanisms reliant on rules or costs, unlike their 

predecessors, and instead implement optimizers that utilize RL. 
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1 Introduction 

1.1 Background on Query Optimization in Distributed Systems 

The rise of large-scale data-reliant applications has resulted in the use of distributed database systems. These 

types of architectures allow for the scaling, fault tolerance, and high availability by allowing computation and 

data to be split into multiple nodes [1]. However, the guarantee of these traditional features results in 

unprecedented complexity in the execution and optimization of a SQL query. Unlike centralized systems, 

distributed databases have to address the management of not only logical query transformations but also data 

locality, communication between nodes, network delay, and load fluctuation [2]. 

At the heart of any database management, system (DBMS) is the query optimizer—the component 

responsible for analyzing the SQL statement and selecting an execution strategy with associated resources [3]. 

It considers a significant portion of the sets of seemingly identical query execution plans (QEPs) and picks one 

that is estimated to require the least cost, most often calculated in time, I/O, or the allocation of resources. In 

the case of a distributed computer system, the optimization of this process shall be significantly more complex 

due to the uncertainty at the particular timeframe of the state of the system and the workload changes [4]. 

Pipelines for traditional query optimization are rule-driven or cost-driven. Both of these methods have 
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worked well for decades, however, they do not have a means for real-time adjustment, which is crucial for 

distributed environments. The changing heterogeneity of workloads, node configurations, and data disribution 

necessitates a more sophisticated strategy that employs optimization based on machine learning techniques and 

has the ability to autonomously adapt and improve. 

1.2 Classical Techniques and Current Gaps 

Classic methods for optimizing queries mostly rely on a combination of the rule or cost strategies. A rule-based 

optimizer uses a set of algorithms known as heuristics to restructure and optimize queries or sub-queries. These 

systems are interpretable and fast, but they are unable to adjust to changing data conditions or system 

conditions. The use of push down selections or applying order in joins are the heuristic algorithms which are 

utilized in the querying system known as restructuring. 

On the other hand, cost-based optimizers use system statistics to estimate the cost of various query execution 

plans and selects the one that is estimated to cost the least. These types of optimizers are more advanced; 

however, they put a lot of reliance on the gathered statistics since their accuracy plays a significant role. As a 

result, they need deep intelligence to take care of novel workloads or outdated cost models which makes these 

optimizers brittle [5]. 

Both techniques analyzed above have demonstrated in practice that they do not work for fast changing or 

distributed environments. Rule-based systems are static and cost based models are dynamic which means they 

can mislead if not properly handled. As systems scale, these approaches become harder to manage due to 

limited flexibility. 

To provide a comparison in the operational differences between different approaches, Critical metrics like 

flexibility, learning capability, real time responsiveness and dependence on numerical data are shown in a table 

below for comparison (Table 1). 

Table 1: Key Differences Between Rule-Based, Cost-Based, and RL-Based Optimizers 

Aspect Rule-Based 

Optimizer 

Cost-Based Optimizer RL-Based Optimizer 

Optimization Basis Predefined rules Estimated cost 

functions 

Reward-driven policy 

learning 

Adaptability Static Semi-dynamic Fully adaptive 

Dependency on Statistics None High Low to moderate 

Execution Plan Diversity Limited Moderate High 

Response to Workload 

Changes 

Poor Partial Excellent 

Learning Capability No No Yes 

Interpretability High Medium Medium to Low 

Real-Time Adjustment No No Yes 

The optimizers that rely on RL seem to be outpacing many of the difficulties that come with the older 

approaches, as shown in the table. Unlike in traditional methods, these techniques are adaptive, data-driven, 

and provide automated learning from feedback offered by the system. 

1.3 Role of Reinforcement Learning 

Reinforcing Learning (RL) is a type of machine learning where an agent is tasked to learn how to design 

optimal decisions by bouncing off an environment to interact with and obtaining feedback through a reward as 

well as a consequence [6]. In the case of query optimization, the RL agent takes in system states such as the 

intricacy of the query and the resources available. They then take action by choosing join orders and receive 

rewards in terms of latencies, I/Os and CPU activities after the query is executed. 
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RL can be described as appropriate for environments that contain distributed databases because the query 

patterns, data, and resources available fluctuate very often. RL optimizers do not need elaborate rules, or 

provide rates as static values; rather, they build optimal instruction sets with time by interacting with the 

execution environment of the query [7]. 

An RLbased optimizer can analyze and diagnose a myriad of QEPs impossible for traditional cost based 

methods, especially with novel or changing workloads. Moreover, RL techniques have the ability for 

generalization which means they are able to use knowledge from previously solved queries to solve new ones 

regardless of whether the structure or data distributions are different. The approaches from RL and the 

traditional models have similarities and differences which can be represented in the Venn diagram below. 

 

Figure 1: Capabilities of Rule-Based, Cost-Based, and RL-Based Optimizers 

This Figure 1 shows the outline of how optimizers based on reinforcement learning incorporate its traditional 

counterparts and at the same time provide improvements required in systems with distributed databases and 

those that are constantly changing. 

1.4 Objectives and Contributions 

In this paper we present a new framework for reinforcement learning based optimization of query execution in 

a distributed database system. The objective is to create a query optimizer that is effective, and also adaptive 

and scalable, while self-improving with time due to the feedback loop incorporated within the system. 

The main contributions of this work include: 
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1. Formulation of Query Optimization as a Reinforcement Learning Problem: The task of selecting a query 

execution plan is defined using the framework of a Markov Decision Process enabling usage of 

contemporary RL techniques like DQN, PPO, and the Actor-Critic model. 

2. Design and Implementation of an RL-Based Optimizer: A modular RL agent is implemented to interact 

with the system and select the best query execution strategy. The model can be trained offline or online 

in real-time. 

3. Integration with Distributed Query Engines: The RL optimizer is implemented within a distributed 

environment such as Apache Spark or Presto, where it interfaces with the optimizer layer for influencing 

plan generation in a reactive manner. 

4. Comprehensive Experimental Evaluation: We ran a series of experiments with the TPC benchmarks and 

simulated workloads to evaluate the performance of the RL-based optimizer against rule and cost-based 

optimizers. 

5. Open-Source Simulation Framework: In the interest of reproducible research, we provide the codebase 

along with the simulation environment incorporating the optimizer and its components, so that others 

may modify and build on its capabilities.  

In this project, we intend to provide an agile and smart query optimization proposal that combines academic 

research with practical application towards the goal of building adaptable database systems. 

  

2 Literature Review 

2.1 History of Query Plan Optimization 

For more than 40 years, query optimization has remained a key focal point of research in database systems. 

The earlier generations of optimizers were largely dominated by rule-based methods, which used deterministic 

transformation rules for tasks such as index usage, join reordering, and predicate pushdown [8]. Systems like 

Ingres and early Oracle versions captured skilled domain experts’ embedded lore in hand-crafted rules, and the 

approaches were computationally efficient because they were simple. However, these systems struggled to 

adapt to changes in query and system dynamism and, thus, were overly rigid. 

By the late 1980s cost-based optimization was widely accepted as the norm in most production-grade 

DBMSs like PostgreSQL, Microsoft SQL Server, and IBM DB2. Cost-based optimizers take advantage of 

system statistics such as histograms, table cardinalities, and selectivity factors to estimate the execution of an 

alternative plan and choose the one, which in their estimation system will be more cost efficient. Unlike cost-

based systems, rule-based systems are more flexible. However, they have their own disadvantages; the quality 

of their statistics, the granularity of their cost models and computational scalability on their systems as the 

number of joins or dimension increases or queries becomes a limitation [9]. 

In distributed systems, the optimization task is even harder to address because of issues like data 

partitioning, communication latency, and resource limitations at the level of individual nodes. Moreover, 

extending the traditional optimizers to distributed frameworks is frequently unscalable for them because of 

static cost estimates and centralized decision-making processes [10]. Additionally, many of them are fragile to 

unpredictability during execution, like transformations in data mobilization, workload surges, or 

malfunctioning nodes. 

In response to the increasing complexity of data systems, both academic and industry researchers started 

considering more adaptive, self-learning, and high-dimensional heuristic query optimization algorithms. This 

change is the basis of data-driven and learning-based optimizers, particularly during the 2010s, when the focus 
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on machine learning (ML) and, more recently, reinforcement learning (RL) approaches surged. 

This change is clearly demonstrated by Figure 2, which shows the dynamics in the use of different 

approaches to query optimization by the number of citations (impact), the number of times they are mentioned 

(popularity), and the number of the year at which they received the most interest from scholars (recency). 

 

Figure 2: Influence vs Popularity of Optimization Techniques (2010–2022) 

The illustration shown here makes it clear that even though both rule-based and cost-based optimizers are still 

immensely relevant, the latest wave of ML-based methods, and especially RL and deep learning, seem to be 

coming to the forefront quite quickly. This indicates a shift in the ecology of reasoning methods set forth to 

tackle query planning issues. 

2.2 ML and RL Applications in Databases 

Machine learning techniques started to make an impact on query optimizations during the cost estimation phase 

in the fist half of the 2010s. Traditional optimizers had reliance in overestimation and did not have complete 

or up to date statistic which is estimated. This misestimation is usually remedied by training regression and 

classification models that seek to improve estimation of query cardinalities based on columns actually 

provided. For example, Kraska et al. (2021) gave deep learning cost estimation the costs and benefits for DNNs 

replacing the hand crafted cost functions with learned models. They achieved better results than traditional 

approaches/models in cases with strong level of outlier bias in the dataset controlled features [11]. 

Other noticeable implementations of ML techniques at query optimization problems include but are not 

limited to: join ordering prediction, caching of query plans, selection of operators, and evaluation of similarities 

at the query level [12]. Support Vector Machines (SVMs), decision trees, and gradient boosting machines were 

researched in a number of works, which often relied on supervised learning with the query execution logs. 

Even when deep learning models have been developed, they still require supervised learning approaches 

that depend on labeled training data. It is important to remember, however, that this data is expensive to 

generate and does not always generalize well to newer tasks. This issue led to the emergence of reinforcement 

learning, where optimal behavior is learned through interaction, rather than supervision. 
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Reinforcement learning was embraced after its success in treating query optimization as a sequential 

decision-making problem. In the early research done by Marcus et al. (2018), joining of tables was done in a 

particular order based on a MDP. Here, an action corresponds to adding a table to join plan and the RL agent 

decides which tables need to be joined for various plans and schemas [13]. Remember, the Reinforcement 

Learning agent learned policies that outperformed the greedy and cost-based baselines under uncertainty. 

Later work has applied RL to other challenging problems, like plan-bounded enumeration, adaptive re-

optimization, and physical operator choice. RL worked well for these problems due to lacking accurate cost 

models or because workload drift made these systems adaptable. 

 As a presentation aid to address the distribution of machine learning techniques among the various 

optimizer parts, we present Figure 3, which is showing the relationship between ML techniques and core 

functionalities of a query optimizer. Mark. 

 

Figure 3: ML Technique Usage Across Optimizer Components (Matrix Heatmap) 

The visual emphasizes primary observations from the matrix:  

• Numerous regions within this matrix were marked in some answers that were almost fully developed in 

RL for known problems like cost estimation and re-optimization. 

• The application of DNNs is primarily found in plan enumeration and cost modeling, as these processes 

benefit from their skill to perform nonlinear modeling. 

• For join ordering and plan selection, tree-based models (random forests, gradient boosting) are applied 

due to their ease of understanding and low execution time. 

• More limited and domain centered, these models are mostly Bayesian optimization and SVMs that serve 

specialist or academic model cases. 
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All these cases support the claim that machine learning can be applied in a myriad of ways and that there is 

no single model type that works for every component of a system. 

2.3 Current RL Approaches and Gaps 

Despite the fact that reinforcement learning looks very promising, there is little development focused on the 

optimization of the narrower sub-problems such as join ordering or plan selection dependent on a specific 

workload. There are very few that cover the complete optimization of the pipeline with an RL agent making 

high-level decisions during logical, physical, and distributed planning stages. 

A primary shortcoming of existing RL approaches is the lack of system integration. In the academic world, 

many models get trained in silos with simulators or benchmarks such as TPC-H without any feedback from a 

live DBMS, which is a valid cause for concern regarding generalizability and deployment practicality. In order 

for RL to be useful, it must function in the context of a database engine, consider query performance metrics, 

and have an execution time deadline. 

Another major difficulty is defining the reward signal. In most scenarios, reward is defined as query latency 

or cost. This approach ignores other important goals such as resource allocation efficiency, stability of plans, 

or achieved level of user satisfaction. This problem defining the reward signal is known as multi-objective 

reward modeling and is still an open research problem in RL for database systems. 

Scalability is a concern as well. The greater the number of tables, joins, or distributed nodes, the 

exponentially larger the execution plan search space becomes. Existing Reinforcement Learning techniques 

seem to struggle greatly with action spaces of overwhelming dimensionality. Newer methods that have come 

out, like hierarchical RL or actor-critic and graph-based state representation techniques, seem to provide hope, 

but there is still a lot of work and comparison needed. 

Moreover, trust and explainability are major challenges to adoption. Unlike with rule-based systems, RL 

agents are generally treated as black boxes. Database optimizers are largely ignored by administrators who 

cannot explain their workings or control them. Approaches like SHAP or policy visualization might aid 

understanding, but there is no widespread adoption of these techniques in the design of query optimizers. 

To conclude, although RL has positioned itself as the most promising optimization technique, its 

implementation is still very much work in progress, typically relegated to research initiatives, and too fragile 

for genuine incorporation into a DBMS. The next phase of research must focus on these issues by crafting 

modular, explainable, and end-to-end optimized RL systems that are directly usable with other components. 

  

3 Methodology 

3.1 Dataset Setup and Simulation Engine 

A simulation environment was built using real and synthetic datasets to evaluate the proposed RL-based query 

optimization framework. This benchmark was chosen for its elaborate join structures and realistic analytical 

workload features. Additional ad hoc queries were generated synthetically for testing purposes to enhance 

robustness, mimicking patterns usually found on distributed platforms such as Presto, Hive, and Spark SQL. 

The queries were performed on a simulated distributed system consisting of virtual nodes with partitioned 

and replicated data. The environment was designed to have reasonable run-time problems such as node crashes, 

network jitter, and skewed data distribution. Each node produced system-level metrics such as CPU load, 

memory pressure, disk throughput, and I/O bottlenecks. The engine logs provided execution time, resource 

utilization, operator breakdowns, and plan statistics, allowing for detailed analysis. 

To ensure every execution plan structure was covered, the queries were grouped into five classes: simple 
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filter-aggregate queries, multi-way joins, nested subqueries, windowed aggregations, and complex queries with 

user defined functions. To increase the diversity of the execution, each query was provided with parameterized 

filters and randomized join orders, which allowed for greater generalizability of the learning model. 

In order to elucidate the datasets and the learning configuration, Table 2 features the key workload 

characteristics with their respective feature vectors obtained from the queries and system states, as well as the 

design of the RL agent's input/output interfaces. 

Table 2: Dataset Specifications – Query Types, Features, and Model Inputs 

Category Details 

Workload Type TPC-H + Synthetic ad hoc query sets 

Query Variants 5 classes (filter, joins, nested, windowed, UDFs) 

Features Extracted Query length, join count, estimated cost, operator types, cardinality 

System State Features CPU load, memory availability, partition skew, I/O bandwidth 

Action Space 15–60 plan variants per query (depending on structure and joins) 

Reward Signal Negative execution time, adjusted for operator utilization and failures 

Training Episodes ~10,000 iterations per benchmark (reset after drift introduced) 

Evaluation Metrics Execution time, plan diversity, reward convergence, generalization error 

3.2 RL Agent Components (State, Action, Reward) 

The integrated optimization method considers the query execution planning as a Markov Decision Process 

(MDP). This gives the RL agent the ability to detect system state, choose a candidate query execution plan, 

carry out the plan, and get feedback in the form of a reward. With many iterations, the agent improves the 

policy to define how to optimally choose execution plans for various system states. 

The representation of the state consists of features from both the query and the system. Query-level features 

cover attributes of the logical query like join graph depth, operator sequence, estimated cost, and selectivity 

estimation. Features from the system include dynamic runtime information such as CPU usage on the nodes, 

memory footprint, partition skew, I/O throughput, queuing delays and other phenomena. These features are 

compiled into a single set, as well as scaled to create the input state vector for the RL agent. 

Every query comes with a set of executable candidate plans that differ between each other in terms of join 

order, physical operators, and scan strategies. These are generated by a base optimizer and get us the discrete 

action space for the agent. Depending on the complexity of the query, there can be anywhere from 15 to more 

than 60 candidate plans. The agent decides on one plan per query according to its policy. 

The reward signal is retrieved from the execution result of the chosen plan. It is negatively related to how 

much time is taken to execute it as well as resource overhead. For example, any plans that are too CPU 

intensive, highly unbalanced, or result in an I/O bottleneck receive, negative signals. On the other hand, plans 

that are completed in short periods of time while resource utilization is balanced and the latency is low receive 

positive signals. This reward is designed so that the agent does not simply minimize latency, but also 

inefficiently plans that overload certain nodes in a distributed can appears to be more favorable than they are. 

3.3 Training Loop and Hyperparameters 

An RL Update agent was trained under the Proximal Policy Optimization (PPO) scheme because it is able to 

learn with great effectiveness in feedback rich environments such as distributed databases, where high 

uncertainty is prevalent. The agent undergoes training in episodes where it is given a set of queries, chooses 

plans using its current policy, executes them and modifies his policy on the basis of outcomes. 

Training is iterative with model updates being done after a pre-specified number of executions. In every 

iteration, the agent updates a reward’s earned during the episode and constructs his policy with a PPO clipped 

and surrogated objective. To avoid overfitting particular query patterns, episodic learning was implemented 
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with randomized plan pools, and mid-training workload drifted towards simulating production environment 

scenarios. 

The effect of changes in training parameters on performance was analyzed by learning rates and batch sizes. 

The changes, which were pairs of these configurations, were assessed in terms of the average validation reward 

and the speed of convergence. Their interrelation is represented in Figure 4, which illustrates how the montage 

of various learning rates and batch sizes affect reward signal given to the RL model. 

 

Figure 4: Hyperparameter Sensitivity vs Model Performance (Scatter Plot) 

The outcomes indicated that a learning rate of 0.01 and a batch size of 64 produced the most consistent and 

successful reward trajectory. Models trained with lower learning rates took a protracted period to converge, 

and models trained with higher rates updated the policy in an unstable manner. Gradients were noisy for batch 

sizes lower than 32, and sizes over 128 staled because of inadequate query plan diversity. 

The training was stopped when the average reward remained constant across more than 300 queries. In most 

experiments, 8000 to 12000 episodes had to be run in order to reach convergence. When tested, models trained 

on synthetic workloads were able to apply their learning to unseen TPC-H queries and Spark SQL traces, which 

showed the strength of the policy architecture.  

3.4 System-Level Integration 

The final step in the methodology was to incorporate the RL-based optimizer into a more practical query 

processing pipeline. An agent-friendly plug-and-play modular software interface was created for the query 

engine. The agent is positioned in-between the logical plan generation and physical plan selection processes. 

It is provided with a list of candidate physical plans and votes on them by re-ranking the plans based on the 

learned policy. In recommendation mode, the agent votes and supplies a top-k plan list that is validated by the 

system’s native cost-based optimizer. In full-decision mode, the agent simply chooses the plan and executes it. 

To capture feedback with regard to runtime, a thin instrumentation layer was deployed together with the 

execution engine. This layer records metrics such as operator latencies, memory spikes, I/O stalls. These 

metrics are sent back to the agent for further learning. The architecture allows both offline training with the 

logs and online training with the live execution data. 
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The activities of the agent are recorded against confidence levels and feature traces, which enable 

administrators to examine its actions. If the measurement of qualifying selection quality drops below a certain 

pre-set threshold, the system reverts to using the baseline optimizer and marks the case for more detailed 

examination. This safety net is in place in order to protect system robustness from the potential detriment of 

RL agent activity. 

The agent showed very low overhead in operational cases. His inference was under 10 milliseconds, and 

the evaluation of policies was done concurrently, which meant that query latency was not impacted. Constant 

integration tests validated the compliance with different query engines, and the tests proved there was always 

gain in performance for different numbers of nodes and varying workloads. 

  

4 Experimental Setup and Evaluation 

4.1 Benchmarking Framework 

In order to assess the accuracy and general applicability of the RL-based query optimization system, a detailed 

benchmarking framework was created. It comprises of a benchmark query workload, a set of evaluation 

metrics, a simulation environment for distributed execution, and an optimization competition with baseline 

strategies. 

The main query workload was adapted from the TPC-H benchmark consisting of 22 complex analytic SQL 

queries. We chose those which were most representative in terms of structural diversity, such as multi-way 

joins, nested subqueries, grouping, and condition logic. Along with TPC-H workload, we also created synthetic 

workloads that mimicked actual query workloads on systems like Apache Hive, Presto, and Spark SQL. These 

synthetic queries made use of runtime parameters, data skew, and plan divergence to stress test the optimizer 

for different system and workload situations. 

The benchmark tests were divided into training, validation, and test sets. The training workloads were used 

to incrementally improve the RL agent policy. The validation workloads were used to control generalization 

performance, while the test workloads, which were not known prior to execution, were used to evaluate 

performance. All benchmarks were performed on a controlled environment so that tests would be consistent 

and reproducible. 

In total, more than 1000 unique variations of the query phrases were carried out to measure scalability for 

the 4-node, 8-node, and 16-node cluster topologies. Every query was performed with all of the optimizers that 

were being evaluated, and their runtime characteristics were captured through a profiling layer integrated into 

the execution engine distributed system, which is done in real time. 

4.2 Evaluation Metrics 

In assessing the performance of the RL-based optimizer in comparison to conventional methods, a set of 

metrics that covered a wide range was incorporated. These metrics included not just query latency with 

execution stability, but also the overall system efficiency, the policy learning behavior, and more. 

The most important metric, Execution Time, was the all-encompassing time from submitting a query to 

deliver the results. This metric was recorded for all queries with all the optimization execution plans. The lower 

the execution time, the better the performance. 

Throughput was characterized by the number of queries completed successfully in a minute when a batch 

workload was being executed. It measures the performance of the optimizer under load. 

Reward Convergence tracked how the RL agent's policy learning became stable. A converged policy is one 

where, after additional training loops, the reward values do not change significantly, meaning that the agent 
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has learnt an effective strategy on how to achieve optimal plan selection. 

To gauge the range of performance optimization plans selected for similar queries, the Plan Diversity Index 

was introduced. This metric indicates whether the optimizer overfits to specific plans or explores diverse 

strategies based on context. 

Stability Under Drift maintained the performance scatter as workload characteristics changed, for instance 

changes in query patterns and resources allocated to the nodes. The more robust optimizers were those that 

remained stable under drift. 

Resource Efficiency quantified the average CPU and memory resources consumed across the execution 

nodes for a given query. More efficient optimizers were those that managed to distribute the workload and 

resource spikes were minimized. The illustrative representative sample values of these metrics are captured in 

Table 3. 

Table 3: Metric Definitions and Sample Values 
Metric Definition Sample Value (RL-Based) 

Execution Time Time taken to complete query execution (ms) 70.2 ms 

Throughput Number of queries successfully executed per minute 128 QPM 

Reward Convergence Measure of policy stability over training iterations Converged by episode 8200 

Plan Diversity Index Ratio of unique plan structures used across similar queries 0.82 

Stability under Drift Variance in performance after workload drift is introduced ±6.3% 

Resource Efficiency Average CPU and memory utilization per query 76% CPU, 58% RAM 

The metrics listed above were collected over hundreds of executions, with special emphasis on maintaining 

constancy in the measurement time frames and system parameter configurations. 

4.3 Simulation Environment 

The A/B tests were performed in a distributed query simulation engine built from scratch for the purposes of 

this research and designed after contemporary cloud-native data platforms. This engine simulated the most 

important parts of the distributed query processing such as query parsing, plan enumeration, execution engine 

dispatching, and metric collection. They were also highly modularized and provided pluggable optimization 

interfaces which enabled direct comparison between two different plan selectors. 

Cluster configurations consisted of a combination of 8-core and 4-core virtual machines interconnected 

over a network with tunable latency and bandwidth. Each node had separate memory and CPU limits, and the 

cluster was designed to emulate a shared-nothing architecture. The data was distributed following a range-

partitioned approach, and additional fault tolerant replicas were created. 

To add dynamism to the environment, workload drift scenarios were applied half way during the evaluation 

phase. These included shifts like schema modifications, failing nodes, and changing workloads (e.g. shallow 

queries to broad joins). These tests measured the optimization’s flexibility when confronted with different real-

world conditions simultaneously. 

Execution of queries was done in batches, performance data was gathered through an unobtrusive 

monitoring system on every execution node. This system recorded timestamps for significant milestones, CPU 

cycles, memory consumption, and Input/Output operations. These parameters were collected in one place and 

were processed through plenty of automation scripts to derive the claimed results in the paper. To demonstrate 

the optimizer efficiency throughout all queries, we included Figure 5, which illustrates the mean execution 

time of queries for each optimization strategy. 
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Figure 5: Average Execution Time Across Optimization Strategies (Bar Chart) 

The mean execution time for the RL-based optimizer was the lowest at 26.3% lower than the cost-based 

average and at 35.9% better than the rule-based system. The mean of the execution time was lower which 

means the performance was better and more stable overall. To analyze the RL-based optimizer's distributional 

advantage more closely, Figure 6 shows a cumulative density function (CDF) of the improvements in execution 

time from the cost-based baseline.  

 

Figure 6: CDF of Percentile Improvement of RL Model Over Cost-Based Optimizer 
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The CDF curve demonstrates that 92 percent of the queries had positive performance with the RL strategy. 

About 40 percent fell into the greater than 15ms improvement mark, and the top 10 percent gained over 25ms. 

Under the RL model, 4 percent of queries were worse, and those were primarily where the cost-based optimizer 

had useful evidence or infrequent workloads not seen during training. In general, the changes brought about 

by Reinforcement Learning (RL) was found to have statistical significance with the aid of paired t-tests 

conducted on a 99 percent confidence level. The results were consistent for outperformance across query 

categories containing multiple joins, nested subqueries, and user defined functions (UDFs). 

4.4 Baselines 

To evaluate the performance of the RL-based optimizer, it was set against two common baseline approaches. 

The rule-based optimization heuristic adopted a fixed set of rules or heuristics from classical systems such as 

Ingres. These rules included predicate pushdown, join reordering based on ranked fixed costs, and early 

aggregation. While rule-based systems were fast and interpretable, they had low flexibility and adaptability in 

unfamiliar query shapes which made them perform poorly. 

The cost-based optimizer from Apache Calcite implements a plan with minimum expected cost using 

dynamic programming and some statistical estimators. Although more precise than rule-based systems, it was 

still vulnerable to outdated and inaccurate statistics, in addition to an ever changing system conditions. Latency 

spikes during execution were noticed when node population or data distributions changed randomly. 

The RL optimizer achieved better performance than both baselines in all workload classes. Furthermore, it 

continued to perform well with high throughput and low latency as system conditions changed. Most 

significantly, the policy was not only agnostic across query structures but also able to withstand drift scenarios 

which is highly unusual. 

The hybrid recommendation mode of the RL agent, in which the traditional optimizer was suggested top k 

plans, also performed well. Although it did not provide the clarity and confidence scoring the baseline provided, 

it did achieve 85 - 90 percent of the benefits from the complete RL model. This data reinforcement learning 

offers to be applied both independently or in conjunction with other strategies which is extremely beneficial.  

 

5 Results and Analysis 

5.1 Training Progress and Convergence 

The initial task in determining how effective the RL-based query optimizer was to assess the extent to which 

it learned how to improve over time. The model underwent training for over 10,000 episodes using a 

combination of TPC-H and synthetic workloads. Feedback was gathered after every episode in order to fine-

tune the policy using Proximal Policy Optimization (PPO). The primary sign of progress made during training 

was the average cumulative reward, which accounts for both execution efficiency and how robust the plan is. 

The reward curve presented in Figure 7 displays a steady rise in the model’s learning trajectory. The first 

2000 episodes had a great deal of fluctuation, as the agent was attempting to execute a variety of plans with 

little to no success. The learning process became stable at episode 3000, and beginning at episode 4000, the 

policy began to converge towards high-performing strategies. As training advanced, the confidence interval 

(±1σ) that was shaded around the mean reward became narrower, which suggests that there was a higher level 

of consistency within the policy outcomes. 
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Figure 7: Reward Curve with Confidence Bounds During Training 

Such patterns are indicative of a model that strategically and reproducibly learned effective strategies. 

Convergence was reached in 8000-8500 episodes as expected with the workload and action space. 

Further training logs indicated that after policy convergence, there was no performance degradation due to 

minor system changes and diverse queries were handled with equal ease. This points to the agent’s capability 

to embody long-term optimization goals beyond mere reward, such as lower resource overhead and system 

strain. 

5.2 Time-to-Reward Relationship 

Query execution time improves with every iteration of an RL-based optimizer, which is one of its greatest 

strengths. This is important for contexts where query patterns change over time, or when older statistic-based 

optimizers suffer from staleness. In these optimization gains, we calculate the execution cost savings for every 

query class and the average that’s achieved by the RL model over the cost-based baseline. 

Figure 8 shows the percentage improvement of execution cost for five major query classes. Results indicate 

that the RL model performs best at optimizing nested queries and queries utilizing user defined functions 

(UDFs), where the model outperforms the baseline at 32% and 29% respectively. These query types are well 

known to induce estimation errors in cost based models, hence the use of RL in these query types makes them 

very attractive to work with. 
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Figure 8: Percentage Improvement in Execution Cost per Query Class (Thermometer Chart) 

The improvement was less for filter queries as they are simple and have low plan diversity. In this instance, 

the RL agent did meet the baseline, and in most cases, slightly surpassed it, indicating that the agent’s overall 

policy was not damaging. 

To analyze how these changes over the entire workload most RL-based optimizers executed more than 90% 

of queries faster with a median improvement of 18.4 milliseconds per query out of the queried set these 

highlights the optimizers usefulness in decrease the systems overall latency. 

5.3 Scalability Across Nodes 

A different aspect of the RL-based optimizer that requires an equally thorough evaluation is its scalability in 

relation to cluster size. We evaluated the model on clusters of 4, 8, and 16 execution nodes, which simulated 

different system load and inter-node communication latency scenarios. The execution time was contended over 

many types of queries and the optimizers were measured and compared at these different deployment scales. 

The RL policy was effective regardless of the number of nodes. The observed latency improvements at four 

node clusters were almost the same as those demonstrated in the eight node setups. The model performed 

poorly towards the higher end of 16-node configurations, particularly in highly contended situations with 

intricate multi-way joins that resulted in unanticipated node-level delays that were not present during the 

training period. 

To address this, we allowed online policy updates during the 16-node test phase. The RL agent adjusted its 

plan selection strategy and recovery steps within a real-time feedback loop of 150 queries. This adjustment 

further supports the capability of the RL model to respond to changes in the environment in real time, especially 
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in cloud-native data platforms that are elastic and permit infrastructure changes to be made on demand. 

We also looked into the reliability of execution time across queries within these configurations. Figure 9 

illustrates running time fluctuation with a boxen plot, allowing analysis of execution performance dispersion 

on a finer level. 

 

Figure 9: Execution Time Variability Across Query Categories (Boxen Plot) 

The RL-optimized showed the least amount of variability for both filter and window queries, which are both 

easy to predict and optimize. On the other hand, nested queries displayed a longer upper tail, which illustrates 

the overbearing influence of plan misprediction or node delays. However, the interquartile range was still lower 

than the cost-based baseline, which suggests enhanced stability overall. 

For operational environments, this is important because the consistency increases the predictability of query 

performance, which often matters as much as the speed itself. This also decreases the effort needed for manual 

tuning, which is often required in distributed query systems. 

5.4 Model Generalization to New Queries 

Generalization is the most important and final metric of performance. An evaluator should do proficiently on 

a workload and also be able to adjust to new, unknown queries with ease. For this, the RL agent was tested on 

a set of queries that were fundamentally different from those it dealt with during its training phase. Such queries 

comprised: 

• Deep joins across schema boundaries. 

• Lateral joins through subqueries. 

• UDFs on semi-structured columns of JSON type. 

• Real-time dashboard-driven ad hoc aggregation work. 

Even though these query shapes were new to them, the RL optimizer did not fail to perform. It achieved 
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over 85 percent selection of optimal execution plans along with an average reduction of 17 percent in execution 

time when compared to the cost-based optimizer. This indicates the extent to which the model is capable of 

learning general principles of effective plan choice instead of relying on stored specific solutions. 

A radar chart integrates all the objectives, which includes the execution time, resources used, accuracy, and 

plan diversity along with their associated stability into a single composite measure. Figure 10 illustrates the 

overall performance. 

 

Figure 10: Model Performance Across Multiple Objectives (Radar Chart) 

The RL optimizer surpasses both the rule-based and cost-based systems in all dimensions that have been 

evaluated. Its performance in “plan diversity” is quite impressive as it indicates that the model does not 

repeatedly choose the same plan structures even if they are similar. This quality makes it robust to edge cases 

in which some plans may perform poorly under different runtime conditions. 

In terms of stability, the optimizer managed well with schema changes and workload drift that were applied 

during testing. In the presence of novel query features, it changed its policy aggressively, which was also 

facilitated by the online learning feedback loop. 

  

6 Discussion 

6.1 Interpretation of Key Findings 

The evidence from the prior section strongly suggests that reinforcement learning can be effectively utilized 

as an optimization technique in a distributed query system. The RL-based optimizer outperformed both the 
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rule-based and cost based optimizers across all benchmarks shown in Figure 9 and Figure 10. The RL agent 

brought over thirty percent savings in execution costs for advanced queries such as those containing complex 

nested subquery structures and user defined functions. These results demonstrate the capability of the RL agent 

to make optimal, data driven choices even within contexts that are typically challenging for deterministic 

optimizers. 

Figure 6 demonstrated that the agent achieved an almost parabolic learning curve with clear convergence 

by episode 8000. The level of learning stability and tight confidence margins of the reward curve implies that 

the optimizer does not just overfit to certain query types or training sets, but instead develops fundamentally 

useful optimization strategies that can work across diverse workloads. In addition, the radar graph in Figure 7 

showed that the model had robust performance against a variety of metrics including execution time, accuracy, 

diversity of plans, and resource efficiency which indicates lack of focus in optimization. 

Remarkably, it was noted that the RL agent was able to transfer learning to new, unseen query structures 

with very little drop in performance. For the generalization tests, the optimizer was able to provide reliable 

advantages for novel query patterns and system states. This is important for real world scenarios where the 

evolution of query patterns is complex and requiring retraining a model from scratch for every variation is not 

an option. 

6.2 Broader Impact on Query Optimization Paradigms 

Applying reinforcement learning to the core of query optimization work marks a clear departure from the 

traditional deterministic methods to one that is much more deep learning based. Even though rule-based and 

cost-based optimizers have been omnipresent in the industry for decades, they can definitely be called outdated 

in terms of modern distributed databases. Real-time systems are usually lacking or have stale cardinality and 

statistics which cost-based optimizers depend so heavily on. While interpretable and fast, rule-based systems 

simply do not cut it in today’s ever changing environments. 

The reinforcement learning model described in this study incorporates adaptability, context awareness, and 

decision making at the level of the policy into query optimization. Instead of rigid methods, the RL agent 

improves its policy with continual changes and responses towards feedback, which helps in dealing with system 

and work load drift. This fits with the self tuning trends in autonomous databases and self tuning data platforms 

where there is a need for minimal human overhead. 

Additionally, the RL agent's ability to sustain performance across different node configurations, query 

complexities, and execution environments enables it to be integrated into cloud-native architectures. The 

optimizers were also able to efficiently execute some tasks that were met with queues, and therefore assumed 

to be unstable (as seen in Figure 7), which proves their adaptive capabilities make them fit to serve as default 

optimization layers in open source and commercial DBMSs. 

6.3 Practical Limitations and Risks 

In spite of the success, and ease of adoption, the RL based optimizers lack a few fundamental attributes that 

streamline the functions. One of the primary worries is the computational workload which is considered to the 

most troubling aspect of training the model. Although, during query execution, inference is considered rapid 

and effective, the computation time needed to train the agent is immense, along with the pre-requisite 

simulation infrastructure. For a few organizations that do not have abundant scalable compute resources or 

synthetic workload generators, this may block the path towards adoption. 

Designing the reward function comes with its own challenge. As was evident from the experiments, poorly 

planned rewards resulted in undesirable, and sometimes, performative behavior in the initial training phases. 

Finding an appropriate reward that minimizes the execution time, system utilization, and fail tolerance is 

complex and if done incorrectly, can lead the learning agent astray. The system's dependency on precise and 

prompt response poses another potential weakness. In distributed systems with noisy or delayed feedback, the 
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RL agent is likely to receive false signals that can adversely affect the policy change. Although online training 

and fallback options can reduce this risk, they complicate the integration process further. 

Moreover, concerns regarding explainability persist. Though the plans and decisions from the rule-based 

and cost-based optimizers are easily understandable, the same cannot be said for the RL agents, for they act as 

black-box models. Consequently, developers or database administrators face difficulty in debugging plan 

optimization mistakes and understanding the reasons why particular plans are chosen. More work needs to be 

done to ensure that the modules that allow the agent to be more understandable are integrated, so the decision-

making process can be better analyzed and understood. 

6.4 Opportunities for Future Work and Integration 

This investigation suggests a number of new research and implementation possibilities. First, the RL-based 

optimizer could be combined with hybrid systems, where it has to work along with traditional optimizers. The 

RL agent could, for instance, create top-k candidate plans, which are subsequently validated or explained by a 

rule-based layer. This not only boosts performance, but also improves interpretability. 

Secondly, performance parameters could be added to enhance the reward function. Multi-objective reward 

signals that take into consideration user satisfaction, SLA compliance, or cost effectiveness in cloud 

deployments would certainly be a possibility. Also, the combination of reinforcement learning with meta-

learning could facilitate faster adaption of the model to new environments with little retuning. 

One more direction that is interesting is using graph neural networks (GNNs) as the policy model. GNNs 

can naturally incorporate the relational dependencies between operations since query plans and logical trees 

are graph-structured. The use of GNNs in conjunction with reinforcement learning could also improve 

generalization and convergence rates. 

Ultimately, broader implementation will hinge on substantial benchmarking and standardization. Fostered 

community adoption and reproduction efforts will stem from initiatives such as the creation of open-source 

query simulation engines, labeled datasets for plan selection, and common evaluation metrics.  

 

7 Conclusion and Future Work 

This work has proven the feasibility of using reinforcement learning as a radical approach to automate query 

execution plan optimization in distributed databases. The RL optimizer achieved remarkable reductions in 

execution cost and improvements in adaptability and generalization over classical rule-based and cost-based 

optimization methods. The model learnt robustly, converged quickly, and performed consistently across many 

types of queries, cluster sizes and workloads. Its capability to cope with volatile environments and changing 

workloads is useful in real world database systems. Even if there are challenges like training difficulty, reward 

shaping, and lack of interpretability, the outcome of this study supports integration of these systems into cloud-

native data platforms. In the near future, we will pursue research with mixed RL and traditional approaches 

focusing on improved explainability and policy graphs to enhance the plan quality and system performance. 
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