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Abstract 

This paper studies White-Box Cryptography (WBC)–based integrity verification for protecting on-

device AI models deployed on resource-constrained and potentially hostile platforms. Conventional 

hash- or MAC-based integrity checks assume that keys and verification logic are isolated from 

adversaries, an assumption that fails when attackers control the execution environment and can 

inspect or modify AI binaries and models. WBC embeds secret keys inside heavily obfuscated 

implementations, making integrity checks more resilient against static and dynamic analysis and key 

extraction. In this study, methods of using WBC, which offers such security advantages, are 

investigated to protect on-device AI embedded within embedded systems. To assess the feasibility 

of WBC-based protection techniques for on-device AI, existing WBC-based integrity verification 

approaches are selected, implemented, and tested in constrained benchmark environments. Using the 

algorithmic analysis and experimental results, functional and non-functional requirements are then 

derived. 
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1 Introduction 

On-device AI has become a core component of modern embedded systems, ranging from smartphones and IoT 

sensors to automotive control units and industrial controllers [1]. Instead of sending data to powerful cloud 

servers, inference is increasingly performed locally to meet latency, privacy, and availability requirements [2]. 

As AI models and their supporting software gain direct access to sensitive data and critical control paths, 

ensuring their integrity becomes a central security requirement [3]. If an attacker can tamper with the model 

parameters or the surrounding code, the system may leak confidential information, behave unpredictably, or 

be deliberately steered into unsafe states [4]. Traditional software integrity mechanisms, such as cryptographic 

hashes, message authentication codes, or code-signing schemes, are typically designed under an assumption 

that secret keys and verification logic are kept separate from and hidden from adversaries. However, in many 

real-world deployments of on-device AI, this assumption no longer holds. Attackers may have full control over 

the device, can dump firmware images, debug and trace execution, and freely inspect or modify binaries and 

models. Under such white-box conditions, a conventional integrity check can often be bypassed by extracting 

keys, patching verification routines, or emulating expected outputs. 

White-Box Cryptography (WBC) was proposed precisely to address such hostile environments [5]. In 

WBC, cryptographic algorithms are implemented in a way that embeds secret keys into heavily obfuscated 

tables and logic, making it significantly harder for an attacker with full code and memory access to recover the 

keys or to modify computations without detection [6]. These properties make WBC an attractive candidate 

foundation for protecting on-device AI, where integrity verification must operate in the presence of powerful 

local adversaries. Nevertheless, the practical feasibility of WBC-based integrity verification on embedded 
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platforms remains insufficiently understood. The execution time and memory consumption of WBC-based 

algorithms are often reported to incur substantial overhead compared with conventional implementations [7]. 

This paper focuses on WBC-based integrity verification for protecting on-device AI models deployed on 

resource-constrained and potentially hostile platforms. Methods of using WBC, which offers such security 

advantages, are investigated to safeguard both the code and parameters of AI workloads embedded within 

embedded systems. To assess the feasibility of this approach, existing WBC-based integrity verification 

schemes are selected, implemented, and evaluated in constrained benchmark environments [8]. Execution time 

and memory usage are measured across multiple scenarios to quantify the performance impact on realistic AI 

workloads. Based on algorithmic analysis and experimental results, concrete functional and non-functional 

requirements are derived. This requirement-oriented perspective aims to bridge the gap between cryptographic 

white-box designs and system-level engineering, providing practical guidance for the deployment of WBC-

based integrity verification in future on-device AI systems [9]. 

 

2 Related Works  

The following summarizes prior research on protecting on-device AI models and, for each study, discusses 

how White-Box Cryptography (WBC) could be leveraged or integrated in that context. SecDeep[10] is a 

lightweight TrustZone-based framework that protects data confidentiality and model integrity by executing 

only a small portion of sensitive tensor-handling code in the Secure World, keeping the secure TCB around 

1K sLoC while preserving GPU acceleration. Its integrity checks rely on MD5/SHA-1 and format-preserving 

encryption replacing or complementing these with WBC-based integrity MACs would enable similar 

protection on devices without TrustZone and harden the integrity path against local key extraction. 

ASGARD[11] is a virtualization-based TEE framework on Armv8-A that uses a pKVM-based TEEvisor and 

a debloated Microdroid enclave to protect DNN models while securely passthroughing the NPU, achieving 

≈2% latency overhead and reduced TCB. In this architecture, WBC-based integrity verification can serve as a 

portable software anchor for validating binaries and configurations inside and outside the enclave, especially 

on heterogeneous edge platforms. Soter[12] is an SGX-based partitioned framework that secures DNN 

confidentiality and integrity by transforming associative operators into morphed GPU-executable forms and 

restoring correct outputs inside the enclave, combined with oblivious fingerprinting for integrity. A WBC-

based integrity engine could replace or augment this fingerprint layer, embedding verification keys in white-

box MACs that validate GPU results even when SGX is unavailable. Partition-and-Merge[13] improves 

memory efficiency and confidentiality for large DNNs on constrained IoT devices by splitting models into 

encrypted/obfuscated sub-networks and merging them at runtime, enabling full on-device execution on 64–

128 MB devices with moderate latency overhead. Attaching WBC-based integrity checks to each partition or 

the merge logic would detect tampered sub-networks and corrupted merge paths, complementing obfuscation 

with stronger runtime integrity. 

DarkneTZ[14] protects model privacy on edge and mobile devices by running only privacy-critical layers 

in TrustZone’s Secure World and the remainder in the Normal World, keeping overhead below about 10% 

while significantly reducing privacy attacks. WBC-based integrity verification can additionally safeguard the 

partitioning policy and sensitive-layer binaries, preventing silent downgrades or malicious layer replacement. 

Slalom[15] mitigates SGX performance and memory limits by offloading linear layers to an untrusted GPU 

and keeping nonlinear operations inside the enclave, combining Freivalds checks for integrity with blinding 

for input privacy and achieving large throughput and energy gains. WBC-based integrity primitives could 

replace or enhance Freivalds, embedding verification keys in white-box MACs that remain robust even if SGX 

boundaries are partially weakened. DeepAttest[16] enforces device-level IP protection and usage control by 

embedding a device-unique fingerprint into DNN weights and verifying it in a TEE before and during 

inference, with negligible accuracy loss and modest latency overhead. WBC-based integrity verification can 

protect the attestation code and fingerprint-checking logic themselves, enabling similar device-bound 

attestation on platforms without TEEs and reducing the risk of forged or bypassed checks. DeepSigns[17] is 
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an end-to-end watermarking framework for DNN ownership that embeds watermarks into internal activation 

distributions rather than weights, preserving accuracy and resisting fine-tuning, pruning, and overwriting 

attacks. Integrating DeepSigns with WBC-based integrity mechanisms would couple ownership proof with 

runtime integrity enforcement, ensuring that only authorized, untampered binaries and parameters run in a 

purely software-based protection stack. While these works address system-level protection, model partitioning, 

attestation, and watermarking, they generally treat cryptographic primitives as black boxes and do not directly 

analyze the behavior of concrete WBC constructions themselves. In contrast, classical WBC research on AES 

provides concrete designs and attack results that can be instantiated and benchmarked as integrity engines for 

protecting on-device AI models. 

The following studies focus on WBC algorithms themselves in this work, these constructions are 

implemented as integrity verification engines for on-device AI, and their benchmarked overheads are used to 

derive concrete functional and non-functional requirements for WBC-based integrity protection. 

Chow et al.[18] introduce the white-box attack context and present the first white-box AES construction, in 

which the key is fused into large lookup tables and surrounded by linear and nonlinear encodings to hinder key 

extraction even when an adversary has full access to code and memory. Their work demonstrates how table-

based implementations can achieve functional correctness while obscuring internal key material, and it has 

become the de facto baseline for subsequent WBC designs and attacks. In the present study, a Chow-style 

white-box AES instance is used as one of the WBC-based integrity verification engines, allowing its 

performance and resource footprint to be evaluated side by side with conventional integrity mechanisms. Xiao 

and Lai[19] propose a secure implementation of white-box AES that specifically addresses structural 

weaknesses of the Chow design, mainly by embedding the ShiftRows operation into matrix products and 

redesigning output encodings so that previously known key-extraction strategies are less effective. Their 

scheme refines the encoding structure to make algebraic decomposition attacks harder, while maintaining 

compatibility with standard AES functionality. As part of the benchmark campaign in this work, an 

implementation following the Xiao–Lai design is instantiated as a second WBC-based integrity primitive, 

enabling comparison of its execution time and memory usage against both Chow’s scheme and non-WBC 

integrity checks under identical on-device AI scenarios. McMillion and Sullivan[20] systematically evaluate 

practical attacks against several deployed white-box AES constructions, including Chow-type and related 

designs, and show that generic techniques such as differential computation analysis can recover embedded 

keys in realistic settings with modest effort. Their results highlight the gap between theoretical white-box goals 

and the actual resistance of many WBC schemes, and they provide concrete attack costs and methodologies 

that any security evaluation must take into account. Building on these insights, the benchmark tests in this 

study treat the selected WBC implementations not as unbreakable primitives but as concrete integrity engines 

with known security margins, and focus on quantifying their performance and memory overheads under 

realistic deployment constraints for on-device AI, thereby informing functional and non-functional 

requirements for future, more robust WBC-based integrity designs. 

 

Figure 1: Processing Flow of WBC-CMAC Generation 
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3 WBC-Based Integrity Verification Framework Proposal 

In this section, we propose the architecture of a MAC generation framework that leverages White-Box 

Cryptography (WBC) for on-device integrity verification. The proposed framework illustrated in Fig. 1, is a 

security software system that applies white-box cryptography to provide strong integrity verification and 

protection for AI models executed in on-device environments that are disconnected from external networks or 

exposed to high security risks. Unlike cloud-based services, on-device AI models are deployed directly to user 

devices, where an attacker may obtain full control or physical access and perform memory dumping, reverse 

engineering, or side-channel analysis. In such settings, the execution environment is effectively a white-box 

attack context in which all code and data can be observed and manipulated. Conventional symmetric-key MAC 

algorithms and simple model-encryption schemes have a fundamental weakness in this context at verification 

time, the secret key must inevitably appear in cleartext in memory or CPU registers when the MAC is computed 

or the model is decrypted. An attacker with white-box access can then extract the key and forge or tamper with 

the protected model at will. To address this problem, the proposed framework adopts the standard CMAC 

structure but replaces the core block-cipher engine 𝐸𝐾(⋅)with a white-box cryptographic implementation 

𝑊𝐵𝐶(⋅). In this design, the secret key is not stored in any explicit variable or memory region; instead, it is 

dispersed and fused into complex arithmetic logic and large lookup tables, heavily obfuscated across the 

implementation. As a result, the encryption key is never present in cleartext at any point during runtime, and 

integrity verification can be performed safely and autonomously on general-purpose processors, even when no 

TEE or secure hardware is available and no network connectivity can be assumed. The framework thus operates 

as an optimized, software-only security solution that preserves the trustworthiness of AI models even under 

extreme threats where an attacker can fully observe and analyze internal system behavior. 

The framework is designed to support a wide range of deployment scenarios, including public networks, 

private networks, and offline or isolated environments in which on-device AI models operate. In all of these 

cases, white-box cryptography is used as the core security mechanism to perform integrity verification without 

exposing secret keys. In connected settings, the framework can complement or partially replace conventional 

CA-based digital signatures by allowing each device to perform local, standalone integrity checks, thereby 

reducing the load on centralized authentication servers and maintaining continuous security even when network 

connectivity is unstable. In offline and physically isolated environments such as smart factories or defense 

systems, where network separation is mandatory and hardware TEEs or real-time key distribution 

infrastructures are undesirable or unavailable, the framework functions as a practical integrity-verification 

alternative that still offers strong security. Because the white-box implementation never stores keys in cleartext 

but embeds them into obfuscated tables and logic, the system can reliably detect model tampering even when 

an attacker has physical access to the device and can perform memory dumps or reverse engineering in a full 

white-box attack setting. At the algorithmic level, the operation of the framework is based on CMAC, with the 

key-dependent encryption step replaced by a white-box block cipher. Conceptually, the CMAC encryption call 

𝐸𝐾(⋅)is substituted by a white-box function 𝑊𝐵𝐶(⋅)that implements the same block-cipher transformation but 

with the key hardwired and obfuscated. The message authentication process comprises four main stages: 

subkey generation, message partitioning and preprocessing, final-block preprocessing, and iterative chaining. 

In the subkey generation stage, the framework derives two independent subkeys 𝐾1and 𝐾2that determine 

how the last block is treated depending on whether padding is required. First, a 𝑏-bit block of zeros 0𝑏(where 

𝑏is the block size of the underlying white-box cipher) is encrypted using the white-box function, yielding an 

initial block 𝐿 = 𝑊𝐵𝐶(0𝑏). Because this computation is performed inside the white-box engine, it never 

exposes the key in cleartext while still producing a value fully tied to the internal key-dependent tables, thus 

preserving resistance against key-recovery attacks. To derive 𝐾1, the most significant bit (MSB) of 𝐿is 

examined. If MSB(𝐿) = 0, then 𝐾1is obtained by left-shifting 𝐿by one bit. If MSB(𝐿) = 1, the left-shifted value 

is further XORed with a fixed constant 𝑅𝑏defined over the underlying Galois field. This follows the standard 

CMAC doubling operation in GF(2𝑏)to avoid structural weaknesses for certain input patterns. The second 

subkey 𝐾2is generated similarly from 𝐾1: the MSB of 𝐾1is checked, and the same shift-and-XOR rule with 

𝑅𝑏is applied. This hierarchical subkey derivation ensures that 𝐾1and 𝐾2are algebraically related yet distinct, 

making it difficult for an attacker to infer whether padding was applied based solely on the final MAC value 
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or intermediate states. Once the subkeys are prepared, the input AI model file or data is normalized into a form 

suitable for processing by the white-box cipher during the message partitioning and preprocessing stage. The 

message 𝑀can have arbitrary length, but the cipher operates on fixed 𝑏-bit blocks. Therefore, 𝑀is split into a 

sequence of blocks (𝑀1,𝑀2, … ,𝑀𝑟), where the first 𝑟 − 1blocks are full 𝑏-bit blocks, and the last block 𝑀𝑟may 

be either full-length or shorter than 𝑏bits. This partitioning step clarifies the block boundaries and determines 

whether the final block is complete or incomplete, which in turn drives the padding rules and subkey usage in 

the next stage. 

The final-block preprocessing stage applies distinct subkeys and, if necessary, padding to the last block to 

prevent structural vulnerabilities in variable-length message authentication. Without this step, a simple 

chaining MAC could be vulnerable to extension attacks: an adversary could append data to a valid message 

and use the previous MAC value as the initial chaining state to forge a new valid MAC. To prevent such 

attacks, the preprocessing ensures that the last block is cryptographically marked as the end of the message. If 

the last block 𝑀𝑟is a complete block of exactly 𝑏bits, the framework computes 𝑀𝑟
′ = 𝑀𝑟 ⊕𝐾1, where 

⊕denotes bitwise XOR. If 𝑀𝑟is shorter than 𝑏bits, a padding function is applied: a single bit ‘1’ is appended 

to the message data, followed by as many ‘0’ bits as needed to reach 𝑏bits, yielding a padded block 𝑀̃𝑟. The 

framework then computes 𝑀𝑟
′ = 𝑀̃𝑟 ⊕𝐾2. Using 𝐾1for the complete-block case and 𝐾2for the padded-block 

case allows the verification process to cryptographically distinguish between naturally terminated messages 

and those requiring padding, closing off subtle forgery vectors. Finally, the iterative chaining stage, structurally 

similar to CBC mode, combines all blocks into a single MAC value that captures the integrity of the entire 

message. An initial chaining variable 𝐶0is set to the all-zero 𝑏-bit string. For each block 𝑀𝑖with 1 ≤ 𝑖 < 𝑟, the 

framework computes 

𝐶𝑖 = 𝑊𝐵𝐶(𝐶𝑖−1⊕𝑀𝑖), 

so that each new chaining value depends on the previous one and the current plaintext block. This ensures 

that any one-bit change in any block propagates through all subsequent chaining values due to the avalanche 

effect of the block cipher, making it infeasible for an attacker to modify a portion of the message without 

altering the final MAC. In the last step, instead of using the original last block 𝑀𝑟, the preprocessed block 𝑀𝑟
′ is 

used: 

𝐶𝑟 = 𝑊𝐵𝐶(𝐶𝑟−1⊕𝑀𝑟
′). 

The final chaining value 𝐶𝑟is output as the message authentication code (MAC) that certifies the integrity 

of the AI model or data under the embedded white-box key. Because the encryption is implemented as a white-

box cipher, the entire computation can be observed, but the key remains non-extractable in practice, and the 

MAC cannot be forged without replicating the same obfuscated implementation or breaking the white-box 

construction. 

 

4 Benchmark Testing   

In the benchmark evaluation, the WBC-MAC framework is compared against a range of conventional and 

white-box cryptographic algorithms on multiple hardware platforms. The baseline algorithms include 

software-based AES (SAES), standard AES, DES, and 3DES, while the white-box family consists of three 

AES implementations: CHOW[18], XIAO[19], and a hardened white-box AES variant, HARDENED-

WBC[20], which incorporates countermeasure ideas inspired by the attack methodologies analyzed in 

McMillion and Sullivan. For each algorithm, we evaluate both single-file encryption and CMAC-based 

integrity-tag generation under identical conditions. The experiments are carried out on four representative 

hardware platforms that span from high-performance to embedded-class devices: an AMD Ryzen 5600G 

desktop processor, an Intel N100 low-power processor, a Raspberry Pi 4 single-board computer, and an 

NVIDIA Jetson Nano edge AI platform. This setup allows us to observe how WBC-induced overheads scale 
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across realistic on-device AI deployment environments. To quantify performance overhead, we measure the 

execution time required by each algorithm within the WBC-MAC framework. For input data sizes ranging 

from 512 KB to 10 MB, the wall-clock time to perform single-file encryption and CMAC tag generation is 

recorded on each hardware platform. All timings are reported in seconds, rounded to the fourth decimal place, 

enabling fine-grained comparison between conventional ciphers and the CHOW[18]-, XIAO[19]-, and 

HARDENED-WBC[20]-based implementations, and providing concrete guidance on acceptable latency 

budgets for on-device AI integrity verification. 

4.1 Execution Time Measured in Benchmark Test Environment 

The benchmark test results are presented in Table 1-4. Across all four benchmark platforms, the execution-

time results show a clear, roughly linear increase with input size for every algorithm, but with very large gaps 

between conventional ciphers and WBC-based implementations. On the high-performance Ryzen 5600G, AES 

and SAES complete encryption plus CMAC tag generation for a 10 MB file in about 0.001–0.35 seconds, with 

DES and 3DES staying below 0.3 seconds as well. In contrast, the CHOW[18] and XIAO[19] white-box AES 

implementations require roughly 15.1 seconds and 37.4 seconds respectively for the same input size, already 

about two to three orders of magnitude slower than standard AES. The HARDENED-WBC[20] variant is the 

most expensive, with its runtime growing from about 59.6 seconds at 512 KB to roughly 1,168.8 seconds (over 

19 minutes) at 10 MB, representing another order of magnitude slowdown even relative to CHOW and XIAO. 

The same pattern holds on lower-end and embedded-class platforms. On Raspberry Pi 4, Intel N100, and 

Jetson Nano, conventional ciphers (AES/SAES/DES/3DES) finish within about 1 second for 10 MB inputs, 

whereas CHOW and XIAO stretch into tens or hundreds of seconds, and HARDENED-WBC rises into the 

multi-thousand-second range. Although absolute times differ per CPU class, with Ryzen 5600G being fastest 

and Raspberry Pi 4 generally slowest, the relative ordering of algorithms is consistent. AES ≈ SAES are fastest, 

followed by DES and 3DES, then CHOW, then XIAO, and finally HARDENED-WBC as the slowest. These 

results indicate that, while WBC-based integrity protection is functionally applicable across heterogeneous on-

device environments, its raw execution-time overhead, especially for hardened designs, must be carefully 

budgeted, for example by limiting protected payload sizes, amortizing checks, or combining WBC-MAC with 

lighter, hardware-assisted mechanisms where available. 

Table 1: Execution Time of WBC-CMAC Generation using Ryzen 5600G  
SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 0.018 < 0.001 0.005 0.014 0.74 1.854 59.556 

1MB 0.035 < 0.001 0.011 0.028 1.533 3.72 118.534 

1.5MB 0.052 < 0.001 0.016 0.041 2.246 5.578 177.482 

2MB 0.07 < 0.001 0.021 0.055 2.945 7.439 235.842 

2.5MB 0.087 < 0.001 0.027 0.071 3.816 9.283 294.394 

3MB 0.104 < 0.001 0.032 0.083 4.421 11.127 352.881 

3.5MB 0.122 < 0.001 0.037 0.096 5.117 13.003 411.387 

4MB 0.139 < 0.001 0.043 0.11 6.013 14.867 468.581 

4.5MB 0.157 < 0.001 0.048 0.124 6.692 16.764 526.942 

5MB 0.174 0.001 0.053 0.138 7.421 18.599 584.749 

5.5MB 0.192 0.001 0.059 0.151 8.155 20.493 643.088 

6MB 0.209 0.001 0.064 0.165 8.922 22.37 702.08 

6.5MB 0.227 0.001 0.07 0.179 9.635 24.258 759.573 

7MB 0.243 0.001 0.075 0.192 10.628 26.118 817.421 

7.5MB 0.262 0.001 0.08 0.206 11.339 28 875.921 

8MB 0.279 0.001 0.086 0.22 12.226 29.877 933.69 

8.5MB 0.295 0.001 0.091 0.233 12.896 31.677 992.402 

9MB 0.313 0.001 0.096 0.247 13.367 33.569 1051.431 

9.5MB 0.334 0.001 0.102 0.261 14.515 35.458 1110.242 

10MB 0.348 0.001 0.107 0.275 15.138 37.362 1168.786 

Table 2: Execution Time of WBC-CMAC Generation using Resberry Pi 4 
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 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 0.068 - 0.018 0.049 3.431 8.953 318.113 

1MB 0.079 - 0.036 0.098 6.78 17.736 634.737 

1.5MB 0.112 - 0.059 0.146 10.418 27.072 946.382 

2MB 0.149 - 0.116 0.195 13.69 35.997 1261.696 

2.5MB 0.187 - 0.108 0.244 16.853 45.001 1577.737 

3MB 0.224 - 0.109 0.292 20.24 53.984 1881.732 

3.5MB 0.262 - 0.127 0.341 23.913 63.071 2192.743 

4MB 0.3 - 0.145 0.388 27.518 71.228 2510.339 

4.5MB 0.336 - 0.164 0.441 30.33 80.726 2817.812 

5MB 0.374 - 0.182 0.488 33.679 90.61 3127.562 

5.5MB 0.411 - 0.2 0.58 37.553 98.311 3433.774 

6MB 0.446 - 0.218 0.584 38.659 108.358 3747.126 

6.5MB 0.485 - 0.236 0.632 45.319 118.023 4056.219 

7MB 0.526 - 0.255 0.683 46.571 126.176 4372.424 

7.5MB 0.563 - 0.273 0.73 52.093 136.573 4670.239 

8MB 0.642 - 0.291 0.78 51.88 143.779 4982.805 

8.5MB 0.638 - 0.309 0.828 57.49 153.042 5295.5 

9MB 0.671 - 0.327 0.922 56.82 163.334 5609.205 

9.5MB 0.714 - 0.345 0.925 62.009 172.031 5916.884 

10MB 0.746 - 0.363 0.974 67.393 179.777 6230.552 

Table 3: Execution Time of WBC-CMAC Generation using Intel N100 
 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 0.037 < 0.001 0.006 0.018 1.283 2.849 102.306 

1MB 0.071 0.001 0.012 0.037 2.562 5.675 199.376 

1.5MB 0.109 0.003 0.019 0.048 3.857 8.512 301 

2MB 0.147 0.002 0.025 0.063 5.134 11.431 393.742 

2.5MB 0.183 0.002 0.033 0.084 6.425 14.363 466.624 

3MB 0.215 0.002 0.038 0.095 7.796 17.082 558.081 

3.5MB 0.252 0.002 0.044 0.115 9.019 20.069 650.874 

4MB 0.287 0.003 0.049 0.131 10.279 22.805 745.507 

4.5MB 0.324 0.003 0.056 0.142 11.589 26.018 852.673 

5MB 0.356 0.004 0.061 0.16 12.774 28.572 926.229 

5.5MB 0.396 0.004 0.072 0.177 14.215 31.636 1017.801 

6MB 0.43 0.004 0.074 0.192 15.407 34.394 1112.793 

6.5MB 0.468 0.004 0.081 0.205 16.648 37.202 1207.702 

7MB 0.51 0.005 0.089 0.224 18.143 40.336 1303.07 

7.5MB 0.537 0.005 0.1 0.239 19.352 43.171 1389.2 

8MB 0.578 0.006 0.098 0.256 20.597 46.08 1476.676 

8.5MB 0.608 0.006 0.107 0.276 21.881 48.824 1569.024 

9MB 0.653 0.007 0.114 0.282 23.125 51.71 1658.027 

9.5MB 0.681 0.009 0.118 0.301 24.435 55.103 1751.148 

10MB 0.711 0.009 0.124 0.317 26.144 57.751 1840.78 

Table 4: Execution Time of WBC-CMAC Generation using Jeson Nano 

 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 0.046 < 0.001 0.022 0.051 3.562 6.236 299.905 

1MB 0.093 0.001 0.043 0.102 7.6 12.472 587.76 

1.5MB 0.139 0.001 0.065 0.153 11.071 18.721 890.78 

2MB 0.187 0.002 0.086 0.206 15.278 24.999 1159.26 

2.5MB 0.231 0.002 0.108 0.256 18.654 31.192 1450.561 

3MB 0.279 0.003 0.129 0.309 22.293 37.411 1737.559 

3.5MB 0.324 0.003 0.151 0.358 26.501 43.716 2014.671 

4MB 0.37 0.004 0.172 0.411 29.728 49.982 2303.321 
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4.5MB 0.416 0.004 0.193 0.461 34.538 56.301 2592.469 

5MB 0.463 0.005 0.216 0.511 37.395 62.417 2874.981 

5.5MB 0.509 0.005 0.237 0.562 41.319 68.733 3178.318 

6MB 0.555 0.006 0.258 0.614 45.115 74.981 3449.922 

6.5MB 0.607 0.006 0.28 0.675 48.272 81.232 3718.618 

7MB 0.648 0.007 0.301 0.716 52.604 87.449 4009.309 

7.5MB 0.695 0.007 0.323 0.767 56.302 93.717 4294.604 

8MB 0.74 0.008 0.347 0.819 59.859 99.994 4591.454 

8.5MB 0.786 0.008 0.366 0.871 63.958 106.165 4864.406 

9MB 0.832 0.009 0.444 0.919 67.314 112.451 5137.22 

9.5MB 0.879 0.009 0.408 0.971 71.39 118.747 5419.393 

10MB 0.925 0.01 0.43 1.023 74.891 124.969 5730.347 

 

4.2 Memory Overheads Measured in Benchmark Test Environment 

The benchmark test results are presented in Table 5-8. Across all benchmark platforms, the memory-

consumption results show that conventional ciphers occupy only a small and slowly growing working set, 

whereas WBC-based implementations require substantially more memory, dominated by their lookup tables 

and obfuscation logic. On the Ryzen 5600G, for example, AES and SAES use roughly 4–14 KB of memory as 

the input size increases from 512 KB to 10 MB, with DES and 3DES remaining in a similar range. In contrast, 

the CHOW[18] implementation grows from about 4.5 KB at 512 KB input to roughly 29.5 KB at 10 MB, 

XIAO[19] from about 48.9 KB to 105.7 KB, and the HARDENED-WBC[20] variant from about 11.7 KB to 

73.7 KB over the same range. Similar patterns appear on Raspberry Pi 4, Intel N100, and Jetson Nano, classical 

ciphers stay within roughly 2–14 KB, while CHOW stabilizes around 25–31 KB, XIAO around 80–105 KB, 

and HARDENED-WBC between about 34–74 KB depending on the platform and input size. 

The results also indicate that memory usage increases only moderately with input size for all algorithms, 

confirming that the dominant factor is the algorithm’s internal state and table allocation rather than the data 

size itself. Among the WBC implementations, XIAO consistently shows the highest memory footprint, 

reflecting its larger and more complex table structure, while HARDENED-WBC typically occupies less 

memory than XIAO but still several times more than CHOW and an order of magnitude more than standard 

AES. Across platforms, this translates into a clear trade-off, adopting WBC-based integrity protection, 

especially stronger designs like XIAO and HARDENED-WBC, requires provisioning tens of kilobytes of 

additional memory per protected process, which is acceptable on desktop-class CPUs but may become a 

constraining factor on embedded or edge devices with tight RAM budgets. These measurements therefore 

provide concrete upper bounds and design guidelines for integrating WBC-MAC into on-device AI 

deployments where both execution time and memory footprint must be carefully controlled. 

Table 5: Memory Consumption of WBC-CMAC Generation using Ryzen 5600G 
 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 4072 4032 2568 2572 4540 48860 11712 

1MB 4380 4364 3148 3088 5840 52196 16028 

1.5MB 5008 4856 3600 3600 7528 55468 19916 

2MB 5424 5656 4176 4112 8740 58692 23640 

2.5MB 5952 5992 4620 4624 10028 61484 29436 

3MB 6520 6716 5140 5140 11320 64824 32464 

3.5MB 7096 7124 5964 5996 12608 68112 33888 

4MB 7632 7644 6508 6488 13904 71028 41308 

4.5MB 8228 8156 6996 6992 15216 73896 45392 

5MB 8476 8300 7492 7508 16504 77148 44988 

5.5MB 8952 8976 8036 8108 17816 80580 51668 

6MB 9508 9504 8544 8576 19088 82728 56716 
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6.5MB 9932 10032 9060 9096 20364 85980 54348 

7MB 10516 10536 9548 9584 21720 89100 53904 

7.5MB 11084 11020 10156 10116 23080 92180 60600 

8MB 11656 11588 10580 10632 24276 95240 61772 

8.5MB 12140 11992 11096 11140 25596 98452 63144 

9MB 12592 12600 11596 11676 26828 100952 64492 

9.5MB 13224 13132 12168 12108 28208 103124 68368 

10MB 13764 13728 12628 12672 29472 105668 73700 

Table 6: Memory Consumption of WBC-CMAC Generation using Rasberry Pi4 
 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 3360 - 2296 2300 4368 49188 12048 

1MB 3808 - 2808 2812 5648 52644 15128 

1.5MB 4320 - 3320 3324 7056 56484 18444 

2MB 4896 - 3832 3836 8336 58404 22052 

2.5MB 5408 - 4344 4348 9616 61092 24588 

3MB 5912 - 4856 4860 11024 63908 27464 

3.5MB 6432 - 5496 5372 12304 67620 30644 

4MB 6928 - 6008 6012 13584 88868 33696 

4.5MB 7456 - 6648 6524 14864 73124 36408 

5MB 7960 - 7032 7036 16144 76068 39424 

5.5MB 8480 - 7544 7548 17424 78628 42184 

6MB 8992 - 8056 8188 18704 81828 44928 

6.5MB 9504 - 8696 8572 20112 84388 47916 

7MB 10016 - 9208 9212 21520 87076 50560 

7.5MB 10528 - 9720 9724 22800 90660 53800 

8MB 11040 - 10232 10236 23952 92708 56668 

8.5MB 11552 - 10744 10748 25232 95908 59228 

9MB 12064 - 11256 11260 26256 98596 62668 

9.5MB 12560 - 11768 11772 27792 101284 66012 

10MB 13088 - 12152 12156 28944 103844 68252 

Table 7: Memory Consumption of WBC-CMAC Generation using Intel N100 
 SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 4096 4096 2176 1664 3840 50432 16688 

1MB 4608 4608 2688 1664 4352 53348 18968 

1.5MB 5120 5120 3200 1536 4992 53960 19188 

2MB 5632 5632 3712 1664 5632 54656 21848 

2.5MB 6144 6144 4096 1664 6016 55292 27984 

3MB 6656 6656 4736 1664 6656 56704 27616 

3.5MB 7168 7168 5248 1920 7168 57600 29172 

4MB 7680 7680 6016 1792 7680 62008 29860 

4.5MB 8192 8192 6400 1920 8064 62660 30764 

5MB 8704 8704 7040 1920 8448 63844 31876 

5.5MB 9216 9216 7424 1920 9344 63620 31948 

6MB 9728 9728 7936 1920 9728 64828 33004 

6.5MB 10240 10112 8448 1792 10112 66292 34124 

7MB 10752 10752 9088 1920 10624 65840 34304 

7.5MB 11264 11264 9472 1792 11264 66628 35008 

8MB 11776 11776 9984 1920 11648 67072 37636 

8.5MB 12288 12288 10624 1664 12416 68644 36460 

9MB 12800 12800 11008 1792 12800 71128 37772 

9.5MB 13312 13312 11520 2048 13312 73884 38452 

10MB 13824 13824 12160 1792 13696 74720 38544 

Table 8: Memory Consumption of WBC-CMAC Generation using Jeson Nano 



Han Bin Lee et al. 

132 

A Study on White-Box Cryptography....    

 

 
SAES AES DES TDES CHOW[18] XIAO[19] HARDENED[20] 

512KB 2952 2936 3944 3944 6088 33124 17164 

1MB 3460 3436 5980 5988 8216 39480 21252 

1.5MB 3944 3952 5980 5992 8508 46024 25348 

2MB 4460 4484 5980 5992 10560 45976 25608 

2.5MB 5260 4964 5984 5988 12632 48140 31620 

3MB 5680 5432 8036 8084 12640 54444 31804 

3.5MB 6144 6080 8340 8340 14700 64932 36220 

4MB 6664 6640 8324 8340 14704 67104 40676 

4.5MB 7120 7108 8352 10404 16772 69156 41000 

5MB 7580 7800 10376 10388 18828 71260 45268 

5.5MB 8096 8192 10380 10400 18844 75424 47328 

6MB 8612 8536 10396 10400 20904 76400 49600 

6.5MB 9112 9068 10392 10408 22972 79632 52828 

7MB 9536 9572 12432 12452 22984 81844 55896 

7.5MB 10332 10108 12432 12444 25044 83948 57436 

8MB 10640 10700 12424 12444 25064 88080 60184 

8.5MB 11260 11096 12436 14500 27100 88088 64112 

9MB 11732 11624 14476 14492 29184 92324 68320 

9.5MB 12192 12348 14480 14496 29204 94416 69868 

10MB 12772 12620 14476 14488 31264 96476 73596 

 

5 Requirements for WBC-based Integrity Checks for On-Device AI Protection 

In this section, functional and non-functional requirements derived from the analysis of WBC and on-device 

AI are discussed. Functional requirements concern the capabilities needed to perform on-device AI integrity 

verification, whereas non-functional requirements relate to the required performance and other quality 

attributes. 

5.1 Functional requirements for WBC-based Integrity Check 

• On-device integrity verification for AI models and data: The system shall provide an integrity 

verification mechanism to protect AI models and related data executed in on-device environments. On-

device AI models are vulnerable to tampering. A built-in integrity mechanism is therefore the core 

function that ensures the AI pipeline is operating on unmodified, trustworthy artifacts. 

• White-box–based protection of keys and internal structure: The system shall use a white-box 

cryptography–based encryption or MAC module so that keys and structural information embedded in the 

AI model are not exposed through reverse engineering or static/dynamic analysis. In white-box attack 

settings, an adversary can fully inspect binaries and memory. Traditional crypto leaves keys briefly in 

plaintext; WBC embeds them into obfuscated tables and logic, raising the bar for key extraction and 

structural analysis. 

• Device-bound control of the integrity verification module: The system shall provide a control 

mechanism that allows the integrity verification module to run only on authorized devices (e.g., based on 

a device identifier or secure binding). Without device binding, protected models and verification code 

could be copied wholesale to unauthorized devices. Device-level control supports licensing, IP protection, 

and prevents offline abuse on cloned hardware. 

• Built-in performance measurement and comparison: The system shall provide functionality to 

measure and compare performance (e.g., memory usage and execution time) before and after applying the 

protection techniques. WBC-based integrity adds non-trivial overhead. Designers need visibility into how 
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much cost is introduced in specific deployments so they can tune policies (e.g., verification frequency, 

choice of WBC variant) and ensure SLAs are still met. 

• Identification and management of integrity-critical assets:  The system shall provide functionality to 

identify and manage critical assets subject to integrity verification, such as model parameters, weights, 

configuration files, and internal computation blocks. Not all artifacts require the same level of protection. 

Being able to explicitly mark and manage “integrity-critical” components allows more focused and 

efficient use of WBC-MAC, reducing overhead while still protecting what matters most. 

• Assessment of obfuscation and reuse resistance: The system shall provide evaluation functionality to 

measure reuse resistance when model obfuscation or similar protection techniques are applied to AI 

models. One key goal of on-device protection is to prevent unauthorized reuse or repackaging of protected 

models. An explicit assessment function (e.g., measuring how easy it is to extract or transplant model 

components) allows quantitative evaluation of obfuscation strength. 

• Logging and reporting of integrity verification results: The system shall be able to store and transmit 

on-device integrity verification results in the form of logs or reports. Auditability is essential for security 

operations, compliance, and incident response. Persisting verification outcomes and, optionally, sending 

them to a backend enables post-mortem analysis and continuous monitoring. 

• Response actions on verification failure: The system shall be able to trigger warning and blocking 

procedures (e.g., halting execution, degrading service, or notifying administrators) when integrity 

verification fails. Detection without reaction is insufficient. When tampering is detected, the system must 

enforce a clear response policy to prevent further damage, stop unauthorized use, and alert responsible 

stakeholders. 

• CMAC-based structure with a white-box cipher core: The system shall be implemented on a CMAC 

structure, where the underlying block cipher is replaced by a white-box cryptographic implementation. 

CMAC is a well-studied, standardized MAC construction with clear security properties. Replacing only 

the block-cipher core with a WBC implementation allows reuse of CMAC’s proven design while 

upgrading the key-handling component to a white-box setting. 

• Local, offline integrity verification without external CAs: The system shall complete integrity 

verification locally, without requiring communication with external authentication servers or CAs 

(Certificate Authorities). On-device AI often runs in disconnected or intermittently connected 

environments. Requiring online CA access is unrealistic; verification must be self-contained, with all 

necessary trust material embedded or provisioned locally. 

• Binary-level handling of diverse AI model formats: The system shall be capable of processing various 

on-device AI model formats at the binary level. In practice, models are deployed in many formats (e.g., 

TFLite, ONNX, proprietary binaries). Tying integrity verification to a specific framework API would limit 

applicability; operating at the binary level makes the mechanism framework-agnostic and suitable for 

heterogeneous model ecosystems. 

• White-box security against key extraction: The system shall guarantee white-box security in the sense 

that, even if an attacker gains full control of the device and performs memory dumps, secret keys are never 

present in cleartext and cannot be extracted. The core motivation for using WBC is to protect keys in 

environments where the adversary can fully observe execution. This requirement forces all integrity-

critical keys to be fused into obfuscated tables and logic, ruling out naïve implementations that merely 

“wrap” a conventional cipher and still leak keys in RAM or registers. 

• No dependence on TEEs or dedicated security chipsets: The system shall be capable of performing 

integrity verification even on general-purpose processors that do not provide TEEs (e.g., TrustZone) or 

dedicated security chipsets. Many low-end or legacy devices lack TrustZone, SGX, or external secure 
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elements. This requirement maintains the design goal that WBC-MAC must stand alone as a software-

only integrity mechanism, particularly in environments where hardware isolation is unavailable or 

untrusted. 

5.2 None-Functional requirements for WBC-based Integrity Check 

• Low computational overhead on embedded / IoT devices: The system shall incur sufficiently low 

computational overhead to operate on resource-constrained embedded and IoT devices, taking into account 

the higher cost of WBC-MAC compared to conventional ciphers. WBC-MAC is orders of magnitude slower 

than AES/CMAC, so integrity checks cannot be assumed “free.” This requirement ensures that, even with 

WBC-based protection, overall verification latency remains compatible with practical deployment 

constraints for edge and IoT devices, instead of being limited to server-class hardware only. 

• Pure software operation on general-purpose processors: The system shall operate purely in software on 

general-purpose processors, without depending on specific hardware security modules. Many on-device AI 

deployments (legacy devices, low-cost boards, or virtualized environments) do not have access to TEEs, 

secure elements, or proprietary accelerators. Requiring only a CPU and system memory makes the proposed 

WBC-based integrity verification broadly deployable across heterogeneous platforms. 

• Minimal impact on AI model quality: After protection is applied, the system shall not cause significant 

degradation in AI model performance (e.g., accuracy and inference latency); model accuracy loss shall be 

kept within ±1 percentage point. Integrity protection must not invalidate the original purpose of the AI 

model. This constraint ensures that any embedding of cryptographic checks, code wrapping, or obfuscation 

does not materially change prediction quality or lead to unacceptable slowdowns in normal inference paths. 

• Execution-time bound on Raspberry Pi 4–class devices: On Raspberry Pi 4–class embedded 

environments, integrity verification for a 1 MB AI model using a lightweight white-box algorithm (e.g., 

CHOW[18] or XIAO[19]) shall complete within 20 seconds. Benchmark results show roughly 6.8 seconds 

for CHOW-CMAC and 17.7 seconds for XIAO-CMAC at 1 MB, so a 20-second upper bound is realistic 

while still providing a safety margin. This requirement defines a concrete performance target for “small to 

medium” models on typical IoT boards. 

• Linear scalability with model size: As the data size increases, verification time shall scale approximately 

linearly with the model size, and no abrupt exponential performance degradation shall occur. Experimental 

results show that CHOW-CMAC[18] time grows roughly in proportion to input size (e.g., from ~3.4 s at 

512 KB to ~67.4 s at 10 MB). Requiring near-linear scaling avoids pathological behaviors (e.g., cache or 

paging blow-ups) that would make WBC-MAC unusable for larger on-device models. 

• Peak memory usage bound (≤ 100 MB) on edge devices: When verifying models of up to 10 MB on 

Jetson Nano and Raspberry Pi 4, the peak memory usage of the integrity verification module shall remain 

below 100 MB. Benchmarks show that even the heaviest WBC variants stay in the tens of megabytes, which 

fits comfortably within typical IoT RAM budgets (1–4 GB). This requirement codifies a conservative upper 

bound that leaves room for the AI runtime and other processes while accounting for WBC’s larger table 

and code footprint. 

• Adaptive algorithm selection based on RAM constraints: Given that stronger WBC implementations 

such as XIAO[19] and HARDENED-WBC[20] exhibit roughly 2–4× higher memory usage than 

lightweight implementations like CHOW, the system shall be able to select algorithms dynamically based 

on available device RAM or enforce configurable memory thresholds. Measurements show that CHOW, 

XIAO, and HARDENED-WBC occupy noticeably different memory footprints. This requirement 

acknowledges that not all devices can afford the heaviest variant and mandates a policy layer that picks an 

appropriate WBC engine per device profile. 
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• Cross-architecture software portability (x86_64 and ARM): The system shall function correctly in pure 

software on both x86_64 architectures (e.g., Ryzen, Intel N100) and ARM architectures (e.g., Raspberry Pi 

4, Jetson Nano), without relying on dedicated hardware accelerators. The benchmark suite explicitly covers 

both desktop-class x86_64 and embedded ARM boards, and the same WBC implementations are expected 

to run on all of them. This requirement ensures that the integrity framework can be reused across data-

center, edge, and deeply embedded deployments. 

• Use in non–real-time integrity scenarios: The WBC-MAC approach, being significantly slower than 

conventional public-key digital signatures (e.g., ECDSA/RSA verification), shall be designed for scenarios 

where strict real-time constraints are not required, such as one-time verification at boot, verification during 

update, or periodic integrity checks. The emphasis shall be on key protection and resistance to white-box 

attacks rather than low-latency verification. ECDSA verification on Raspberry Pi 4 completes in 

milliseconds, whereas WBC-MAC for 1 MB may take several seconds. This requirement clarifies the 

intended use cases: WBC-MAC is for high-assurance integrity in white-box settings, not for per-request, 

latency-sensitive checks. 

• Maintained white-box property despite higher memory usage: Even if WBC-MAC consumes more 

memory at runtime than typical digital-signature verification, the white-box property—ensuring that the 

encryption key is never exposed in plaintext—shall be preserved. The additional memory cost due to 

obfuscated tables and logic shall be treated as an acceptable security–performance trade-off, provided that 

overall peak memory usage remains within the specified bounds. Benchmarks confirm that WBC-MAC 

uses significantly more memory than ECDSA verification due to large, obfuscated tables. This requirement 

explicitly accepts that overhead as long as it stays within the defined limits and continues to deliver the 

main benefit of WBC: robust key protection in hostile on-device environments. 

 

6 Conclusion 

In our research, we investigated White-Box Cryptography (WBC) as a software-only basis for integrity 

verification of on-device AI models deployed on resource-constrained and potentially hostile platforms. 

Traditional hash- and MAC-based integrity mechanisms assume that keys and verification logic remain hidden 

from adversaries, an assumption that fails when attackers can fully inspect firmware and binaries. To address 

this, we proposed a WBC-based CMAC framework in which the block-cipher core is implemented as a white-

box primitive, embedding keys into heavily obfuscated tables and logic so that integrity verification is still 

possible under full white-box attacker capabilities. We instantiated concrete WBC-based integrity approaches 

and benchmarked the WBC-based integrity check approaches against conventional block ciphers on four 

representative hardware platforms, from Ryzen 5600G to Raspberry Pi 4 and Jetson Nano. The results show 

that WBC-based integrity checks incur one to three orders of magnitude higher execution time and require tens 

of kilobytes of additional memory per protected process, while still scaling roughly linearly with input size. In 

addition, Based on algorithmic analysis and these benchmarks, we derived functional and non-functional 

requirements for deploying WBC-based integrity verification in on-device AI systems. The functional 

requirements specify capabilities such as on-device integrity checks for models and data, white-box protection 

of keys, device-bound control, logging and response policies, and binary-level handling of diverse model 

formats. The non-functional requirements define acceptable bounds for execution time and memory usage, 

cross-architecture portability, minimal impact on model quality, and a focus on non–real-time integrity 

scenarios. We expect that this requirement-oriented perspective and the provided benchmark data will serve as 

a practical foundation for designing and deploying more robust, white-box–aware integrity protections in future 

on-device AI systems. 
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