A Study on White-Box Cryptography based Integrity
Verification Techniques for On-Device AI Model and Their
Performance

Han Bin Lee, Jun Young Cho, TaecGuen Kim

Department of Cyber Security, Korea University Sejong, Republic of Korea

Received: October 05, 2025; Revised: November 15, 2025; Accepted: December 10, 2025; Published: December 23, 2025

Abstract

This paper studies White-Box Cryptography (WBC)—based integrity verification for protecting on-
device Al models deployed on resource-constrained and potentially hostile platforms. Conventional
hash- or MAC-based integrity checks assume that keys and verification logic are isolated from
adversaries, an assumption that fails when attackers control the execution environment and can
inspect or modify Al binaries and models. WBC embeds secret keys inside heavily obfuscated
implementations, making integrity checks more resilient against static and dynamic analysis and key
extraction. In this study, methods of using WBC, which offers such security advantages, are
investigated to protect on-device Al embedded within embedded systems. To assess the feasibility
of WBC-based protection techniques for on-device Al, existing WBC-based integrity verification
approaches are selected, implemented, and tested in constrained benchmark environments. Using the
algorithmic analysis and experimental results, functional and non-functional requirements are then
derived.

Keywords: Whitebox Cryptography, Data Integrity, Message Authentication Code.

1 Introduction

On-device Al has become a core component of modern embedded systems, ranging from smartphones and [oT
sensors to automotive control units and industrial controllers [1]. Instead of sending data to powerful cloud
servers, inference is increasingly performed locally to meet latency, privacy, and availability requirements [2].
As Al models and their supporting software gain direct access to sensitive data and critical control paths,
ensuring their integrity becomes a central security requirement [3]. If an attacker can tamper with the model
parameters or the surrounding code, the system may leak confidential information, behave unpredictably, or
be deliberately steered into unsafe states [4]. Traditional software integrity mechanisms, such as cryptographic
hashes, message authentication codes, or code-signing schemes, are typically designed under an assumption
that secret keys and verification logic are kept separate from and hidden from adversaries. However, in many
real-world deployments of on-device Al, this assumption no longer holds. Attackers may have full control over
the device, can dump firmware images, debug and trace execution, and freely inspect or modify binaries and
models. Under such white-box conditions, a conventional integrity check can often be bypassed by extracting
keys, patching verification routines, or emulating expected outputs.

White-Box Cryptography (WBC) was proposed precisely to address such hostile environments [5]. In
WBC, cryptographic algorithms are implemented in a way that embeds secret keys into heavily obfuscated
tables and logic, making it significantly harder for an attacker with full code and memory access to recover the
keys or to modify computations without detection [6]. These properties make WBC an attractive candidate
foundation for protecting on-device Al, where integrity verification must operate in the presence of powerful
local adversaries. Nevertheless, the practical feasibility of WBC-based integrity verification on embedded

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 11, Article No. 07 (December 23, 2025)
DOI: https://doi.org/10.64799/rebicte.vi1i.216

123

A Study on White-Box Cryptography.... Han Bin Lee et al.

platforms remains insufficiently understood. The execution time and memory consumption of WBC-based
algorithms are often reported to incur substantial overhead compared with conventional implementations [7].

This paper focuses on WBC-based integrity verification for protecting on-device Al models deployed on
resource-constrained and potentially hostile platforms. Methods of using WBC, which offers such security
advantages, are investigated to safeguard both the code and parameters of Al workloads embedded within
embedded systems. To assess the feasibility of this approach, existing WBC-based integrity verification
schemes are selected, implemented, and evaluated in constrained benchmark environments [8]. Execution time
and memory usage are measured across multiple scenarios to quantify the performance impact on realistic Al
workloads. Based on algorithmic analysis and experimental results, concrete functional and non-functional
requirements are derived. This requirement-oriented perspective aims to bridge the gap between cryptographic
white-box designs and system-level engineering, providing practical guidance for the deployment of WBC-
based integrity verification in future on-device Al systems [9].

2 Related Works

The following summarizes prior research on protecting on-device Al models and, for each study, discusses
how White-Box Cryptography (WBC) could be leveraged or integrated in that context. SecDeep[10] is a
lightweight TrustZone-based framework that protects data confidentiality and model integrity by executing
only a small portion of sensitive tensor-handling code in the Secure World, keeping the secure TCB around
1K sLoC while preserving GPU acceleration. Its integrity checks rely on MD5/SHA-1 and format-preserving
encryption replacing or complementing these with WBC-based integrity MACs would enable similar
protection on devices without TrustZone and harden the integrity path against local key extraction.
ASGARDJ[11] is a virtualization-based TEE framework on Armv8-A that uses a pPKVM-based TEEvisor and
a debloated Microdroid enclave to protect DNN models while securely passthroughing the NPU, achieving
~2% latency overhead and reduced TCB. In this architecture, WBC-based integrity verification can serve as a
portable software anchor for validating binaries and configurations inside and outside the enclave, especially
on heterogeneous edge platforms. Soter[12] is an SGX-based partitioned framework that secures DNN
confidentiality and integrity by transforming associative operators into morphed GPU-executable forms and
restoring correct outputs inside the enclave, combined with oblivious fingerprinting for integrity. A WBC-
based integrity engine could replace or augment this fingerprint layer, embedding verification keys in white-
box MACs that validate GPU results even when SGX is unavailable. Partition-and-Merge[13] improves
memory efficiency and confidentiality for large DNNs on constrained [oT devices by splitting models into
encrypted/obfuscated sub-networks and merging them at runtime, enabling full on-device execution on 64—
128 MB devices with moderate latency overhead. Attaching WBC-based integrity checks to each partition or
the merge logic would detect tampered sub-networks and corrupted merge paths, complementing obfuscation
with stronger runtime integrity.

DarkneTZ][14] protects model privacy on edge and mobile devices by running only privacy-critical layers
in TrustZone’s Secure World and the remainder in the Normal World, keeping overhead below about 10%
while significantly reducing privacy attacks. WBC-based integrity verification can additionally safeguard the
partitioning policy and sensitive-layer binaries, preventing silent downgrades or malicious layer replacement.
Slalom[15] mitigates SGX performance and memory limits by offloading linear layers to an untrusted GPU
and keeping nonlinear operations inside the enclave, combining Freivalds checks for integrity with blinding
for input privacy and achieving large throughput and energy gains. WBC-based integrity primitives could
replace or enhance Freivalds, embedding verification keys in white-box MACs that remain robust even if SGX
boundaries are partially weakened. DeepAttest[16] enforces device-level IP protection and usage control by
embedding a device-unique fingerprint into DNN weights and verifying it in a TEE before and during
inference, with negligible accuracy loss and modest latency overhead. WBC-based integrity verification can
protect the attestation code and fingerprint-checking logic themselves, enabling similar device-bound
attestation on platforms without TEEs and reducing the risk of forged or bypassed checks. DeepSigns[17] is

124

A Study on White-Box Cryptography.... Han Bin Lee et al.

an end-to-end watermarking framework for DNN ownership that embeds watermarks into internal activation
distributions rather than weights, preserving accuracy and resisting fine-tuning, pruning, and overwriting
attacks. Integrating DeepSigns with WBC-based integrity mechanisms would couple ownership proof with
runtime integrity enforcement, ensuring that only authorized, untampered binaries and parameters run in a
purely software-based protection stack. While these works address system-level protection, model partitioning,
attestation, and watermarking, they generally treat cryptographic primitives as black boxes and do not directly
analyze the behavior of concrete WBC constructions themselves. In contrast, classical WBC research on AES
provides concrete designs and attack results that can be instantiated and benchmarked as integrity engines for
protecting on-device Al models.

The following studies focus on WBC algorithms themselves in this work, these constructions are
implemented as integrity verification engines for on-device Al, and their benchmarked overheads are used to
derive concrete functional and non-functional requirements for WBC-based integrity protection.

Chow et al.[18] introduce the white-box attack context and present the first white-box AES construction, in
which the key is fused into large lookup tables and surrounded by linear and nonlinear encodings to hinder key
extraction even when an adversary has full access to code and memory. Their work demonstrates how table-
based implementations can achieve functional correctness while obscuring internal key material, and it has
become the de facto baseline for subsequent WBC designs and attacks. In the present study, a Chow-style
white-box AES instance is used as one of the WBC-based integrity verification engines, allowing its
performance and resource footprint to be evaluated side by side with conventional integrity mechanisms. Xiao
and Lai[19] propose a secure implementation of white-box AES that specifically addresses structural
weaknesses of the Chow design, mainly by embedding the ShiftRows operation into matrix products and
redesigning output encodings so that previously known key-extraction strategies are less effective. Their
scheme refines the encoding structure to make algebraic decomposition attacks harder, while maintaining
compatibility with standard AES functionality. As part of the benchmark campaign in this work, an
implementation following the Xiao—Lai design is instantiated as a second WBC-based integrity primitive,
enabling comparison of its execution time and memory usage against both Chow’s scheme and non-WBC
integrity checks under identical on-device Al scenarios. McMillion and Sullivan[20] systematically evaluate
practical attacks against several deployed white-box AES constructions, including Chow-type and related
designs, and show that generic techniques such as differential computation analysis can recover embedded
keys in realistic settings with modest effort. Their results highlight the gap between theoretical white-box goals
and the actual resistance of many WBC schemes, and they provide concrete attack costs and methodologies
that any security evaluation must take into account. Building on these insights, the benchmark tests in this
study treat the selected WBC implementations not as unbreakable primitives but as concrete integrity engines
with known security margins, and focus on quantifying their performance and memory overheads under
realistic deployment constraints for on-device Al, thereby informing functional and non-functional
requirements for future, more robust WBC-based integrity designs.

WBC-based MAC
Generation

Initial Vector Generation Subkey Generation

_I—b Message Partitioning

¥

Add Padding
WB(“baied Pany WRBC-based A WRBC-based H i
T » » i —»@ see -~ ——s) MAC
Enc U FEnc B Enc [- i

Figure 1: Processing Flow of WBC-CMAC Generation
125

A Study on White-Box Cryptography.... Han Bin Lee et al.

3 WBC-Based Integrity Verification Framework Proposal

In this section, we propose the architecture of a MAC generation framework that leverages White-Box
Cryptography (WBC) for on-device integrity verification. The proposed framework illustrated in Fig. 1, is a
security software system that applies white-box cryptography to provide strong integrity verification and
protection for Al models executed in on-device environments that are disconnected from external networks or
exposed to high security risks. Unlike cloud-based services, on-device Al models are deployed directly to user
devices, where an attacker may obtain full control or physical access and perform memory dumping, reverse
engineering, or side-channel analysis. In such settings, the execution environment is effectively a white-box
attack context in which all code and data can be observed and manipulated. Conventional symmetric-key MAC
algorithms and simple model-encryption schemes have a fundamental weakness in this context at verification
time, the secret key must inevitably appear in cleartext in memory or CPU registers when the MAC is computed
or the model is decrypted. An attacker with white-box access can then extract the key and forge or tamper with
the protected model at will. To address this problem, the proposed framework adopts the standard CMAC
structure but replaces the core block-cipher engine Eg(-)with a white-box cryptographic implementation
WBC(-). In this design, the secret key is not stored in any explicit variable or memory region; instead, it is
dispersed and fused into complex arithmetic logic and large lookup tables, heavily obfuscated across the
implementation. As a result, the encryption key is never present in cleartext at any point during runtime, and
integrity verification can be performed safely and autonomously on general-purpose processors, even when no
TEE or secure hardware is available and no network connectivity can be assumed. The framework thus operates
as an optimized, software-only security solution that preserves the trustworthiness of Al models even under
extreme threats where an attacker can fully observe and analyze internal system behavior.

The framework is designed to support a wide range of deployment scenarios, including public networks,
private networks, and offline or isolated environments in which on-device Al models operate. In all of these
cases, white-box cryptography is used as the core security mechanism to perform integrity verification without
exposing secret keys. In connected settings, the framework can complement or partially replace conventional
CA-based digital signatures by allowing each device to perform local, standalone integrity checks, thereby
reducing the load on centralized authentication servers and maintaining continuous security even when network
connectivity is unstable. In offline and physically isolated environments such as smart factories or defense
systems, where network separation is mandatory and hardware TEEs or real-time key distribution
infrastructures are undesirable or unavailable, the framework functions as a practical integrity-verification
alternative that still offers strong security. Because the white-box implementation never stores keys in cleartext
but embeds them into obfuscated tables and logic, the system can reliably detect model tampering even when
an attacker has physical access to the device and can perform memory dumps or reverse engineering in a full
white-box attack setting. At the algorithmic level, the operation of the framework is based on CMAC, with the
key-dependent encryption step replaced by a white-box block cipher. Conceptually, the CMAC encryption call
E (-)is substituted by a white-box function WBC(-)that implements the same block-cipher transformation but
with the key hardwired and obfuscated. The message authentication process comprises four main stages:
subkey generation, message partitioning and preprocessing, final-block preprocessing, and iterative chaining.

In the subkey generation stage, the framework derives two independent subkeys K;and K,that determine
how the last block is treated depending on whether padding is required. First, a b-bit block of zeros 0?(where
bis the block size of the underlying white-box cipher) is encrypted using the white-box function, yielding an
initial block L = WBC(0?). Because this computation is performed inside the white-box engine, it never
exposes the key in cleartext while still producing a value fully tied to the internal key-dependent tables, thus
preserving resistance against key-recovery attacks. To derive K;, the most significant bit (MSB) of Lis
examined. [f MSB(L) = 0, then K; is obtained by left-shifting Lby one bit. If MSB(L) = 1, the left-shifted value
is further XORed with a fixed constant R,defined over the underlying Galois field. This follows the standard
CMAC doubling operation in GF(2?)to avoid structural weaknesses for certain input patterns. The second
subkey K,is generated similarly from K;: the MSB of Kjis checked, and the same shift-and-XOR rule with
Ry is applied. This hierarchical subkey derivation ensures that K;and K,are algebraically related yet distinct,
making it difficult for an attacker to infer whether padding was applied based solely on the final MAC value

126

A Study on White-Box Cryptography.... Han Bin Lee et al.

or intermediate states. Once the subkeys are prepared, the input Al model file or data is normalized into a form
suitable for processing by the white-box cipher during the message partitioning and preprocessing stage. The
message Mcan have arbitrary length, but the cipher operates on fixed b-bit blocks. Therefore, Mis split into a
sequence of blocks (M, M,, ..., M,.), where the first — 1blocks are full b-bit blocks, and the last block M, may
be either full-length or shorter than bbits. This partitioning step clarifies the block boundaries and determines
whether the final block is complete or incomplete, which in turn drives the padding rules and subkey usage in
the next stage.

The final-block preprocessing stage applies distinct subkeys and, if necessary, padding to the last block to
prevent structural vulnerabilities in variable-length message authentication. Without this step, a simple
chaining MAC could be vulnerable to extension attacks: an adversary could append data to a valid message
and use the previous MAC value as the initial chaining state to forge a new valid MAC. To prevent such
attacks, the preprocessing ensures that the last block is cryptographically marked as the end of the message. If
the last block M,is a complete block of exactly bbits, the framework computes M, = M, @ K;, where
@denotes bitwise XOR. If M,.is shorter than bbits, a padding function is applied: a single bit ‘1’ is appended
to the message data, followed by as many ‘0’ bits as needed to reach bbits, yielding a padded block M,. The
framework then computes M. = M, @ K,. Using K; for the complete-block case and K, for the padded-block
case allows the verification process to cryptographically distinguish between naturally terminated messages
and those requiring padding, closing off subtle forgery vectors. Finally, the iterative chaining stage, structurally
similar to CBC mode, combines all blocks into a single MAC value that captures the integrity of the entire
message. An initial chaining variable Cyis set to the all-zero b-bit string. For each block M;with 1 < i < r, the
framework computes

Ci = WBC(Ci_l @ Mi)'

so that each new chaining value depends on the previous one and the current plaintext block. This ensures
that any one-bit change in any block propagates through all subsequent chaining values due to the avalanche
effect of the block cipher, making it infeasible for an attacker to modify a portion of the message without
altering the final MAC. In the last step, instead of using the original last block M,., the preprocessed block M;.is
used:

Cr = WBC(Cr-1 © My).

The final chaining value C,is output as the message authentication code (MAC) that certifies the integrity
of the Al model or data under the embedded white-box key. Because the encryption is implemented as a white-
box cipher, the entire computation can be observed, but the key remains non-extractable in practice, and the
MAC cannot be forged without replicating the same obfuscated implementation or breaking the white-box
construction.

4 Benchmark Testing

In the benchmark evaluation, the WBC-MAC framework is compared against a range of conventional and
white-box cryptographic algorithms on multiple hardware platforms. The baseline algorithms include
software-based AES (SAES), standard AES, DES, and 3DES, while the white-box family consists of three
AES implementations: CHOWJ[18], XIAO[19], and a hardened white-box AES variant, HARDENED-
WBCJ[20], which incorporates countermeasure ideas inspired by the attack methodologies analyzed in
McMillion and Sullivan. For each algorithm, we evaluate both single-file encryption and CMAC-based
integrity-tag generation under identical conditions. The experiments are carried out on four representative
hardware platforms that span from high-performance to embedded-class devices: an AMD Ryzen 5600G
desktop processor, an Intel N100 low-power processor, a Raspberry Pi 4 single-board computer, and an
NVIDIA Jetson Nano edge Al platform. This setup allows us to observe how WBC-induced overheads scale

127

A Study on White-Box Cryptography.... Han Bin Lee et al.

across realistic on-device Al deployment environments. To quantify performance overhead, we measure the
execution time required by each algorithm within the WBC-MAC framework. For input data sizes ranging
from 512 KB to 10 MB, the wall-clock time to perform single-file encryption and CMAC tag generation is
recorded on each hardware platform. All timings are reported in seconds, rounded to the fourth decimal place,
enabling fine-grained comparison between conventional ciphers and the CHOWJ[18]-, XIAO[19]-, and
HARDENED-WBC[20]-based implementations, and providing concrete guidance on acceptable latency
budgets for on-device Al integrity verification.

4.1 Execution Time Measured in Benchmark Test Environment

The benchmark test results are presented in Table 1-4. Across all four benchmark platforms, the execution-
time results show a clear, roughly linear increase with input size for every algorithm, but with very large gaps
between conventional ciphers and WBC-based implementations. On the high-performance Ryzen 5600G, AES
and SAES complete encryption plus CMAC tag generation for a 10 MB file in about 0.001-0.35 seconds, with
DES and 3DES staying below 0.3 seconds as well. In contrast, the CHOW/[18] and XIAO[19] white-box AES
implementations require roughly 15.1 seconds and 37.4 seconds respectively for the same input size, already
about two to three orders of magnitude slower than standard AES. The HARDENED-WBCJ[20] variant is the
most expensive, with its runtime growing from about 59.6 seconds at 512 KB to roughly 1,168.8 seconds (over
19 minutes) at 10 MB, representing another order of magnitude slowdown even relative to CHOW and XIAO.

The same pattern holds on lower-end and embedded-class platforms. On Raspberry Pi 4, Intel N100, and
Jetson Nano, conventional ciphers (AES/SAES/DES/3DES) finish within about 1 second for 10 MB inputs,
whereas CHOW and XIAO stretch into tens or hundreds of seconds, and HARDENED-WBC rises into the
multi-thousand-second range. Although absolute times differ per CPU class, with Ryzen 5600G being fastest
and Raspberry Pi 4 generally slowest, the relative ordering of algorithms is consistent. AES = SAES are fastest,
followed by DES and 3DES, then CHOW, then XIAO, and finally HARDENED-WBC as the slowest. These
results indicate that, while WBC-based integrity protection is functionally applicable across heterogeneous on-
device environments, its raw execution-time overhead, especially for hardened designs, must be carefully
budgeted, for example by limiting protected payload sizes, amortizing checks, or combining WBC-MAC with
lighter, hardware-assisted mechanisms where available.

Table 1: Execution Time of WBC-CMAC Generation using Ryzen 5600G

SAES AES DES TDES | CHOWI[18] | XIAO[19] | HARDENED][20]
512KB 0.018 <0.001 0.005 0.014 0.74 1.854 59.556
1MB 0.035 <0.001 0.011 0.028 1.533 3.72 118.534
1.5SMB 0.052 <0.001 0.016 0.041 2.246 5.578 177.482
2MB 0.07 <0.001 0.021 0.055 2.945 7.439 235.842
2.5MB 0.087 <0.001 0.027 0.071 3.816 9.283 294.394
3MB 0.104 <0.001 0.032 0.083 4.421 11.127 352.881
3.5MB 0.122 <0.001 0.037 0.096 5.117 13.003 411.387
4MB 0.139 <0.001 0.043 0.11 6.013 14.867 468.581
4.5MB 0.157 <0.001 0.048 0.124 6.692 16.764 526.942
5SMB 0.174 0.001 0.053 0.138 7.421 18.599 584.749
5.5MB 0.192 0.001 0.059 0.151 8.155 20.493 643.088
6MB 0.209 0.001 0.064 0.165 8.922 22.37 702.08
6.5SMB 0.227 0.001 0.07 0.179 9.635 24.258 759.573
7MB 0.243 0.001 0.075 0.192 10.628 26.118 817.421
7.5MB 0.262 0.001 0.08 0.206 11.339 28 875.921
SMB 0.279 0.001 0.086 0.22 12.226 29.877 933.69
8.5MB 0.295 0.001 0.091 0.233 12.896 31.677 992.402
9MB 0.313 0.001 0.096 0.247 13.367 33.569 1051.431
9.5MB 0.334 0.001 0.102 0.261 14.515 35.458 1110.242
10MB 0.348 0.001 0.107 0.275 15.138 37.362 1168.786

Table 2: Execution Time of WBC-CMAC Generation using Resberry Pi 4
128

A Study on White-Box Cryptography....

Han Bin Lee et al.

SAES AES DES TDES | CHOW[18] | XIAO[19] | HARDENED|[20]
512KB 0.068 - 0.018 0.049 3.431 8.953 318.113
1MB 0.079 - 0.036 0.098 6.78 17.736 634.737
1.5MB 0.112 - 0.059 0.146 10.418 27.072 946.382
2MB 0.149 - 0.116 0.195 13.69 35.997 1261.696
2.5MB 0.187 - 0.108 0.244 16.853 45.001 1577.737
3MB 0.224 - 0.109 0.292 20.24 53.984 1881.732
3.5MB 0.262 - 0.127 0.341 23.913 63.071 2192.743
4MB 0.3 - 0.145 0.388 27.518 71.228 2510.339
4.5MB 0.336 - 0.164 0.441 30.33 80.726 2817.812
5MB 0.374 - 0.182 0.488 33.679 90.61 3127.562
5.5MB 0.411 - 0.2 0.58 37.553 98.311 3433.774
6MB 0.446 - 0.218 0.584 38.659 108.358 3747.126
6.5SMB 0.485 - 0.236 0.632 45319 118.023 4056.219
TMB 0.526 - 0.255 0.683 46.571 126.176 4372.424
7.5MB 0.563 - 0.273 0.73 52.093 136.573 4670.239
S§MB 0.642 - 0.291 0.78 51.88 143.779 4982.805
8.5MB 0.638 - 0.309 0.828 57.49 153.042 5295.5
I9MB 0.671 - 0.327 0.922 56.82 163.334 5609.205
9.5MB 0.714 - 0.345 0.925 62.009 172.031 5916.884
10MB 0.746 - 0.363 0.974 67.393 179.777 6230.552
Table 3: Execution Time of WBC-CMAC Generation using Intel N100
SAES AES DES | TDES | CHOW[18] | XIAO[19] | HARDENED|20]
512KB 0.037 <0.001 0.006 0.018 1.283 2.849 102.306
1MB 0.071 0.001 0.012 0.037 2.562 5.675 199.376
1.5SMB 0.109 0.003 0.019 0.048 3.857 8.512 301
2MB 0.147 0.002 0.025 0.063 5.134 11.431 393.742
2.5MB 0.183 0.002 0.033 0.084 6.425 14.363 466.624
3MB 0.215 0.002 0.038 0.095 7.796 17.082 558.081
3.5MB 0.252 0.002 0.044 0.115 9.019 20.069 650.874
4MB 0.287 0.003 0.049 0.131 10.279 22.805 745.507
4.5MB 0.324 0.003 0.056 0.142 11.589 26.018 852.673
5MB 0.356 0.004 0.061 0.16 12.774 28.572 926.229
5.5MB 0.396 0.004 0.072 0.177 14.215 31.636 1017.801
6MB 0.43 0.004 0.074 0.192 15.407 34.394 1112.793
6.5SMB 0.468 0.004 0.081 0.205 16.648 37.202 1207.702
7MB 0.51 0.005 0.089 0.224 18.143 40.336 1303.07
7.5MB 0.537 0.005 0.1 0.239 19.352 43.171 1389.2
SMB 0.578 0.006 0.098 0.256 20.597 46.08 1476.676
8.5MB 0.608 0.006 0.107 0.276 21.881 48.824 1569.024
9MB 0.653 0.007 0.114 0.282 23.125 51.71 1658.027
9.5MB 0.681 0.009 0.118 0.301 24.435 55.103 1751.148
10MB 0.711 0.009 0.124 0.317 26.144 57.751 1840.78
Table 4: Execution Time of WBC-CMAC Generation using Jeson Nano
SAES | AES DES | TDES | CHOW]J18] | XIAO[19] | HARDENED|20]
512KB | 0.046 | <0.001 | 0.022 | 0.051 3.562 6.236 299.905
1MB 0.093 | 0.001 | 0.043 | 0.102 7.6 12.472 587.76
1.5SMB | 0.139 | 0.001 | 0.065 | 0.153 11.071 18.721 890.78
2MB 0.187 | 0.002 | 0.086 | 0.206 15.278 24.999 1159.26
2.5MB | 0.231 0.002 | 0.108 | 0.256 18.654 31.192 1450.561
3MB 0.279 | 0.003 | 0.129 | 0.309 22.293 37411 1737.559
35MB | 0.324 | 0.003 | 0.151 | 0.358 26.501 43.716 2014.671
4MB 0.37 0.004 | 0.172 | 0.411 29.728 49.982 2303.321

129

A Study on White-Box Cryptography.... Han Bin Lee et al.

45MB | 0416 | 0.004 | 0.193 | 0.461 34.538 56.301 2592.469
SMB 0.463 | 0.005 | 0.216 | 0.511 37.395 62.417 2874.981
5.5MB | 0.509 | 0.005 | 0.237 | 0.562 41.319 68.733 3178.318
6MB 0.555 | 0.006 | 0.258 | 0.614 45.115 74.981 3449.922
6.5MB | 0.607 | 0.006 0.28 0.675 48.272 81.232 3718.618
7MB 0.648 | 0.007 | 0.301 | 0.716 52.604 87.449 4009.309
7.5MB | 0.695 | 0.007 | 0.323 | 0.767 56.302 93.717 4294.604
SMB 0.74 0.008 | 0.347 | 0.819 59.859 99.994 4591.454
8.5MB | 0.786 | 0.008 | 0.366 | 0.871 63.958 106.165 4864.406
9MB 0.832 | 0.009 | 0.444 | 0.919 67.314 112.451 5137.22
9.5MB | 0.879 | 0.009 | 0.408 | 0.971 71.39 118.747 5419.393
10MB | 0.925 0.01 0.43 1.023 74.891 124.969 5730.347

4.2 Memory Overheads Measured in Benchmark Test Environment

The benchmark test results are presented in Table 5-8. Across all benchmark platforms, the memory-
consumption results show that conventional ciphers occupy only a small and slowly growing working set,
whereas WBC-based implementations require substantially more memory, dominated by their lookup tables
and obfuscation logic. On the Ryzen 5600G, for example, AES and SAES use roughly 4-14 KB of memory as
the input size increases from 512 KB to 10 MB, with DES and 3DES remaining in a similar range. In contrast,
the CHOWTJ18] implementation grows from about 4.5 KB at 512 KB input to roughly 29.5 KB at 10 MB,
XIAO[19] from about 48.9 KB to 105.7 KB, and the HARDENED-WBCJ[20] variant from about 11.7 KB to
73.7 KB over the same range. Similar patterns appear on Raspberry Pi 4, Intel N100, and Jetson Nano, classical
ciphers stay within roughly 2—14 KB, while CHOW stabilizes around 25-31 KB, XIAO around 80-105 KB,
and HARDENED-WBC between about 34—74 KB depending on the platform and input size.

The results also indicate that memory usage increases only moderately with input size for all algorithms,
confirming that the dominant factor is the algorithm’s internal state and table allocation rather than the data
size itself. Among the WBC implementations, XIAO consistently shows the highest memory footprint,
reflecting its larger and more complex table structure, while HARDENED-WBC typically occupies less
memory than XIAO but still several times more than CHOW and an order of magnitude more than standard
AES. Across platforms, this translates into a clear trade-off, adopting WBC-based integrity protection,
especially stronger designs like XIAO and HARDENED-WBC, requires provisioning tens of kilobytes of
additional memory per protected process, which is acceptable on desktop-class CPUs but may become a
constraining factor on embedded or edge devices with tight RAM budgets. These measurements therefore
provide concrete upper bounds and design guidelines for integrating WBC-MAC into on-device Al
deployments where both execution time and memory footprint must be carefully controlled.

Table 5: Memory Consumption of WBC-CMAC Generation using Ryzen 5600G

SAES AES DES TDES | CHOW[18] | XIAO[19] | HARDENED|20]
512KB 4072 4032 2568 2572 4540 48860 11712
1MB 4380 4364 3148 3088 5840 52196 16028
1.SMB 5008 4856 3600 3600 7528 55468 19916
2MB 5424 5656 4176 4112 8740 58692 23640
2.5MB 5952 5992 4620 4624 10028 61484 29436
3MB 6520 6716 5140 5140 11320 64824 32464
3.5MB 7096 7124 5964 5996 12608 68112 33888
4MB 7632 7644 6508 6488 13904 71028 41308
4.5MB 8228 8156 6996 6992 15216 73896 45392
5MB 8476 8300 7492 7508 16504 77148 44988
5.5MB 8952 8976 8036 8108 17816 80580 51668
6MB 9508 9504 8544 8576 19088 82728 56716

130

A Study on White-Box Cryptography....

Han Bin Lee et al.

6.5SMB 9932 10032 9060 9096 20364 85980 54348
7TMB 10516 10536 9548 9584 21720 89100 53904
7.5MB 11084 11020 10156 10116 23080 92180 60600
SMB 11656 11588 10580 10632 24276 95240 61772
8.5MB 12140 11992 11096 11140 25596 98452 63144
9MB 12592 12600 11596 11676 26828 100952 64492
9.5MB 13224 13132 12168 12108 28208 103124 68368
10MB 13764 13728 12628 12672 29472 105668 73700
Table 6: Memory Consumption of WBC-CMAC Generation using Rasberry Pi4
SAES AES DES TDES | CHOW[18] | XIAO[19] | HARDENED|[20]
512KB 3360 - 2296 2300 4368 49188 12048
1MB 3808 - 2808 2812 5648 52644 15128
1.5MB 4320 - 3320 3324 7056 56484 18444
2MB 4896 - 3832 3836 8336 58404 22052
2.5MB 5408 - 4344 4348 9616 61092 24588
3MB 5912 - 4856 4860 11024 63908 27464
3.5MB 6432 - 5496 5372 12304 67620 30644
4MB 6928 - 6008 6012 13584 88868 33696
4.5MB 7456 - 6648 6524 14864 73124 36408
SMB 7960 - 7032 7036 16144 76068 39424
5.5MB 8480 - 7544 7548 17424 78628 42184
6MB 8992 - 8056 8188 18704 81828 44928
6.5MB 9504 - 8696 8572 20112 84388 47916
7MB 10016 - 9208 9212 21520 87076 50560
7.5MB 10528 - 9720 9724 22800 90660 53800
SMB 11040 - 10232 10236 23952 92708 56668
8.5MB 11552 - 10744 10748 25232 95908 59228
9MB 12064 - 11256 11260 26256 98596 62668
9.5MB 12560 - 11768 11772 27792 101284 66012
10MB 13088 - 12152 12156 28944 103844 68252
Table 7: Memory Consumption of WBC-CMAC Generation using Intel N100
SAES AES DES TDES | CHOW[18] | XIAO[19] | HARDENED|20]
512KB 4096 4096 2176 1664 3840 50432 16688
1MB 4608 4608 2688 1664 4352 53348 18968
1.5MB 5120 5120 3200 1536 4992 53960 19188
2MB 5632 5632 3712 1664 5632 54656 21848
2.5MB 6144 6144 4096 1664 6016 55292 27984
3MB 6656 6656 4736 1664 6656 56704 27616
3.5MB 7168 7168 5248 1920 7168 57600 29172
4MB 7680 7680 6016 1792 7680 62008 29860
4.5MB 8192 8192 6400 1920 8064 62660 30764
5MB 8704 8704 7040 1920 8448 63844 31876
5.5MB 9216 9216 7424 1920 9344 63620 31948
6MB 9728 9728 7936 1920 9728 64828 33004
6.5MB 10240 10112 8448 1792 10112 66292 34124
7MB 10752 10752 9088 1920 10624 65840 34304
7.5MB 11264 11264 9472 1792 11264 66628 35008
SMB 11776 11776 9984 1920 11648 67072 37636
8.5MB 12288 12288 10624 1664 12416 68644 36460
9MB 12800 12800 11008 1792 12800 71128 37772
9.5MB 13312 13312 11520 2048 13312 73884 38452
10MB 13824 13824 12160 1792 13696 74720 38544

Table 8: Memory Consumption of WBC-CMAC Generation using Jeson Nano

131

A Study on White-Box Cryptography.... Han Bin Lee et al.

SAES AES DES TDES | CHOW[18] | XIAO[19] | HARDENED|20]
512KB | 2952 2936 3944 3944 6088 33124 17164
IMB 3460 3436 5980 5988 8216 39480 21252
1.5SMB | 3944 3952 5980 5992 8508 46024 25348
2MB 4460 4484 5980 5992 10560 45976 25608
25MB | 5260 4964 5984 5988 12632 48140 31620
3MB 5680 5432 8036 8084 12640 54444 31804
35MB | 6144 6080 8340 8340 14700 64932 36220
4MB 6664 6640 8324 8340 14704 67104 40676
45MB | 7120 7108 8352 10404 16772 69156 41000
SMB 7580 7800 10376 | 10388 18828 71260 45268
55MB | 8096 8192 10380 | 10400 18844 75424 47328
6MB 8612 8536 10396 | 10400 20904 76400 49600
6.5MB | 9112 9068 10392 | 10408 22972 79632 52828
7MB 9536 9572 12432 | 12452 22984 81844 55896
7.5MB | 10332 | 10108 | 12432 | 12444 25044 83948 57436
SMB 10640 | 10700 | 12424 | 12444 25064 88080 60184
8.5MB | 11260 | 11096 | 12436 | 14500 27100 88088 64112
9MB 11732 | 11624 | 14476 | 14492 29184 92324 68320
95MB | 12192 | 12348 | 14480 | 14496 29204 94416 69868
10MB | 12772 | 12620 | 14476 | 14488 31264 96476 73596

5 Requirements for WBC-based Integrity Checks for On-Device Al Protection

In this section, functional and non-functional requirements derived from the analysis of WBC and on-device
Al are discussed. Functional requirements concern the capabilities needed to perform on-device Al integrity
verification, whereas non-functional requirements relate to the required performance and other quality
attributes.

5.1 Functional requirements for WBC-based Integrity Check

e On-device integrity verification for AI models and data: The system shall provide an integrity
verification mechanism to protect Al models and related data executed in on-device environments. On-
device Al models are vulnerable to tampering. A built-in integrity mechanism is therefore the core
function that ensures the Al pipeline is operating on unmodified, trustworthy artifacts.

e White-box—based protection of keys and internal structure: The system shall use a white-box
cryptography-based encryption or MAC module so that keys and structural information embedded in the
Al model are not exposed through reverse engineering or static/dynamic analysis. In white-box attack
settings, an adversary can fully inspect binaries and memory. Traditional crypto leaves keys briefly in
plaintext; WBC embeds them into obfuscated tables and logic, raising the bar for key extraction and
structural analysis.

e Device-bound control of the integrity verification module: The system shall provide a control
mechanism that allows the integrity verification module to run only on authorized devices (e.g., based on
a device identifier or secure binding). Without device binding, protected models and verification code
could be copied wholesale to unauthorized devices. Device-level control supports licensing, IP protection,
and prevents offline abuse on cloned hardware.

e Built-in performance measurement and comparison: The system shall provide functionality to

measure and compare performance (e.g., memory usage and execution time) before and after applying the
protection techniques. WBC-based integrity adds non-trivial overhead. Designers need visibility into how

132

A Study on White-Box Cryptography.... Han Bin Lee et al.

much cost is introduced in specific deployments so they can tune policies (e.g., verification frequency,
choice of WBC variant) and ensure SLAs are still met.

Identification and management of integrity-critical assets: The system shall provide functionality to
identify and manage critical assets subject to integrity verification, such as model parameters, weights,
configuration files, and internal computation blocks. Not all artifacts require the same level of protection.
Being able to explicitly mark and manage “integrity-critical” components allows more focused and
efficient use of WBC-MAC, reducing overhead while still protecting what matters most.

Assessment of obfuscation and reuse resistance: The system shall provide evaluation functionality to
measure reuse resistance when model obfuscation or similar protection techniques are applied to Al
models. One key goal of on-device protection is to prevent unauthorized reuse or repackaging of protected
models. An explicit assessment function (e.g., measuring how easy it is to extract or transplant model
components) allows quantitative evaluation of obfuscation strength.

Logging and reporting of integrity verification results: The system shall be able to store and transmit
on-device integrity verification results in the form of logs or reports. Auditability is essential for security
operations, compliance, and incident response. Persisting verification outcomes and, optionally, sending
them to a backend enables post-mortem analysis and continuous monitoring.

Response actions on verification failure: The system shall be able to trigger warning and blocking
procedures (e.g., halting execution, degrading service, or notifying administrators) when integrity
verification fails. Detection without reaction is insufficient. When tampering is detected, the system must
enforce a clear response policy to prevent further damage, stop unauthorized use, and alert responsible
stakeholders.

CMAC-based structure with a white-box cipher core: The system shall be implemented on a CMAC
structure, where the underlying block cipher is replaced by a white-box cryptographic implementation.
CMAC is a well-studied, standardized MAC construction with clear security properties. Replacing only
the block-cipher core with a WBC implementation allows reuse of CMAC’s proven design while
upgrading the key-handling component to a white-box setting.

Local, offline integrity verification without external CAs: The system shall complete integrity
verification locally, without requiring communication with external authentication servers or CAs
(Certificate Authorities). On-device Al often runs in disconnected or intermittently connected
environments. Requiring online CA access is unrealistic; verification must be self-contained, with all
necessary trust material embedded or provisioned locally.

Binary-level handling of diverse AI model formats: The system shall be capable of processing various
on-device Al model formats at the binary level. In practice, models are deployed in many formats (e.g.,
TFLite, ONNX, proprietary binaries). Tying integrity verification to a specific framework API would limit
applicability; operating at the binary level makes the mechanism framework-agnostic and suitable for
heterogeneous model ecosystems.

White-box security against key extraction: The system shall guarantee white-box security in the sense
that, even if an attacker gains full control of the device and performs memory dumps, secret keys are never
present in cleartext and cannot be extracted. The core motivation for using WBC is to protect keys in
environments where the adversary can fully observe execution. This requirement forces all integrity-
critical keys to be fused into obfuscated tables and logic, ruling out naive implementations that merely
“wrap” a conventional cipher and still leak keys in RAM or registers.

No dependence on TEEs or dedicated security chipsets: The system shall be capable of performing
integrity verification even on general-purpose processors that do not provide TEEs (e.g., TrustZone) or
dedicated security chipsets. Many low-end or legacy devices lack TrustZone, SGX, or external secure

133

A Study on White-Box Cryptography....

Han Bin Lee et al.

elements. This requirement maintains the design goal that WBC-MAC must stand alone as a software-
only integrity mechanism, particularly in environments where hardware isolation is unavailable or
untrusted.

5.2 None-Functional requirements for WBC-based Integrity Check

Low computational overhead on embedded / IoT devices: The system shall incur sufficiently low
computational overhead to operate on resource-constrained embedded and loT devices, taking into account
the higher cost of WBC-MAC compared to conventional ciphers. WBC-MAC is orders of magnitude slower
than AES/CMAC, so integrity checks cannot be assumed “free.” This requirement ensures that, even with
WBC-based protection, overall verification latency remains compatible with practical deployment
constraints for edge and loT devices, instead of being limited to server-class hardware only.

Pure software operation on general-purpose processors: The system shall operate purely in software on
general-purpose processors, without depending on specific hardware security modules. Many on-device Al
deployments (legacy devices, low-cost boards, or virtualized environments) do not have access to TEEs,
secure elements, or proprietary accelerators. Requiring only a CPU and system memory makes the proposed
WBC-based integrity verification broadly deployable across heterogeneous platforms.

Minimal impact on AI model quality: After protection is applied, the system shall not cause significant
degradation in Al model performance (e.g., accuracy and inference latency); model accuracy loss shall be
kept within 1 percentage point. Integrity protection must not invalidate the original purpose of the Al
model. This constraint ensures that any embedding of cryptographic checks, code wrapping, or obfuscation
does not materially change prediction quality or lead to unacceptable slowdowns in normal inference paths.

Execution-time bound on Raspberry Pi 4-class devices: On Raspberry Pi 4-class embedded
environments, integrity verification for a 1 MB Al model using a lightweight white-box algorithm (e.g.,
CHOW[18] or XIAO[19]) shall complete within 20 seconds. Benchmark results show roughly 6.8 seconds
for CHOW-CMAC and 17.7 seconds for XIAO-CMAC at 1 MB, so a 20-second upper bound is realistic
while still providing a safety margin. This requirement defines a concrete performance target for “small to
medium” models on typical [oT boards.

Linear scalability with model size: As the data size increases, verification time shall scale approximately
linearly with the model size, and no abrupt exponential performance degradation shall occur. Experimental
results show that CHOW-CMAC[18] time grows roughly in proportion to input size (e.g., from ~3.4 s at
512 KB to ~67.4 s at 10 MB). Requiring near-linear scaling avoids pathological behaviors (e.g., cache or
paging blow-ups) that would make WBC-MAC unusable for larger on-device models.

Peak memory usage bound (< 100 MB) on edge devices: When verifying models of up to 10 MB on
Jetson Nano and Raspberry Pi 4, the peak memory usage of the integrity verification module shall remain
below 100 MB. Benchmarks show that even the heaviest WBC variants stay in the tens of megabytes, which
fits comfortably within typical [oT RAM budgets (1-4 GB). This requirement codifies a conservative upper
bound that leaves room for the Al runtime and other processes while accounting for WBC’s larger table
and code footprint.

Adaptive algorithm selection based on RAM constraints: Given that stronger WBC implementations
such as XIAO[19] and HARDENED-WBC[20] exhibit roughly 2—4x higher memory usage than
lightweight implementations like CHOW, the system shall be able to select algorithms dynamically based
on available device RAM or enforce configurable memory thresholds. Measurements show that CHOW,
XIAO, and HARDENED-WBC occupy noticeably different memory footprints. This requirement
acknowledges that not all devices can afford the heaviest variant and mandates a policy layer that picks an
appropriate WBC engine per device profile.

134

A Study on White-Box Cryptography.... Han Bin Lee et al.

¢ Cross-architecture software portability (x86 64 and ARM): The system shall function correctly in pure
software on both x86_64 architectures (e.g., Ryzen, Intel N100) and ARM architectures (e.g., Raspberry Pi
4, Jetson Nano), without relying on dedicated hardware accelerators. The benchmark suite explicitly covers
both desktop-class x86 64 and embedded ARM boards, and the same WBC implementations are expected
to run on all of them. This requirement ensures that the integrity framework can be reused across data-
center, edge, and deeply embedded deployments.

e Use in non-real-time integrity scenarios: The WBC-MAC approach, being significantly slower than
conventional public-key digital signatures (e.g., ECDSA/RSA verification), shall be designed for scenarios
where strict real-time constraints are not required, such as one-time verification at boot, verification during
update, or periodic integrity checks. The emphasis shall be on key protection and resistance to white-box
attacks rather than low-latency verification. ECDSA verification on Raspberry Pi 4 completes in
milliseconds, whereas WBC-MAC for 1 MB may take several seconds. This requirement clarifies the
intended use cases: WBC-MAC is for high-assurance integrity in white-box settings, not for per-request,
latency-sensitive checks.

e Maintained white-box property despite higher memory usage: Even if WBC-MAC consumes more
memory at runtime than typical digital-signature verification, the white-box property—ensuring that the
encryption key is never exposed in plaintext—shall be preserved. The additional memory cost due to
obfuscated tables and logic shall be treated as an acceptable security—performance trade-off, provided that
overall peak memory usage remains within the specified bounds. Benchmarks confirm that WBC-MAC
uses significantly more memory than ECDSA verification due to large, obfuscated tables. This requirement
explicitly accepts that overhead as long as it stays within the defined limits and continues to deliver the
main benefit of WBC: robust key protection in hostile on-device environments.

6 Conclusion

In our research, we investigated White-Box Cryptography (WBC) as a software-only basis for integrity
verification of on-device Al models deployed on resource-constrained and potentially hostile platforms.
Traditional hash- and MAC-based integrity mechanisms assume that keys and verification logic remain hidden
from adversaries, an assumption that fails when attackers can fully inspect firmware and binaries. To address
this, we proposed a WBC-based CMAC framework in which the block-cipher core is implemented as a white-
box primitive, embedding keys into heavily obfuscated tables and logic so that integrity verification is still
possible under full white-box attacker capabilities. We instantiated concrete WBC-based integrity approaches
and benchmarked the WBC-based integrity check approaches against conventional block ciphers on four
representative hardware platforms, from Ryzen 5600G to Raspberry Pi 4 and Jetson Nano. The results show
that WBC-based integrity checks incur one to three orders of magnitude higher execution time and require tens
of kilobytes of additional memory per protected process, while still scaling roughly linearly with input size. In
addition, Based on algorithmic analysis and these benchmarks, we derived functional and non-functional
requirements for deploying WBC-based integrity verification in on-device Al systems. The functional
requirements specify capabilities such as on-device integrity checks for models and data, white-box protection
of keys, device-bound control, logging and response policies, and binary-level handling of diverse model
formats. The non-functional requirements define acceptable bounds for execution time and memory usage,
cross-architecture portability, minimal impact on model quality, and a focus on non-real-time integrity
scenarios. We expect that this requirement-oriented perspective and the provided benchmark data will serve as
a practical foundation for designing and deploying more robust, white-box—aware integrity protections in future
on-device Al systems.

Acknowledgements

This work was supported by the Institute of Information & Communications Technology Planning &
Evaluation(IITP) grant funded by the Korea government (MSIT) (No.RS-2025-02215590, Development of Al
135

A Study on White-Box Cryptography.... Han Bin Lee et al.

implementation obfuscation technology to prevent information leakage in On-Device Al)

References

[11 Wang, X., Tang, Z., Guo, J., Meng, T., Wang, C. H., Wang, T., & Jia, W. (2025). Empowering edge
intelligence: A comprehensive survey on on-device Al models. ACM Computing Surveys, 57(9), 1-39.

[2] Heydari, S., & Mahmoud, Q. H. (2025). Tiny machine learning and on-device inference: A survey of
applications, challenges, and future directions. Sensors, 25(10), 3191.

[31 Palo Alto Networks. (2025). Al model security: What it is and how to implement it
https://www.paloaltonetworks.com/cyberpedia/what-is-ai-model-security

[4] Yang, J., He, Q., Zhou, Z., Dai, X., Chen, F., Tian, C., & Yang, Y. (2025). EdgeThemis: Ensuring model
integrity for edge intelligence. In Proceedings of the ACM Web Conference 2025 (WWW °25) (pp. 3136—
3146).

[51 Chow, S., Eisen, P., Johnson, H., & van Oorschot, P. C. (2003). White-box cryptography and an AES
implementation. In Selected Areas in Cryptography (SAC 2002) (Lecture Notes in Computer Science, Vol.
2595, pp. 250-270). Springer.

[6] Chow, S., Eisen, P., Johnson, H., & van Oorschot, P. C. (2003). A white-box DES implementation for DRM
applications. In J. Feigenbaum (Ed.), Digital Rights Management (DRM 2002) (Lecture Notes in Computer
Science, Vol. 2696, pp. 1-15). Springer.

[71 Wyseur, B. (2012). White-box cryptography: Hiding keys in software. NAGRA Kudelski Group.

[8] Albricci, D. G. V., Ceria, M., Cioschi, F., Fornari, N., Shakiba, A., & Visconti, A. (2019). Measuring
performances of a white-box approach in the IoT context. Symmetry, 11(8), 1000.

[91 Shi, Y., Li, Y., Ouyang, Q., Gao, J., & Zhao, S. (2025). LSTable: A new white-box cipher for embedded
devices in IoT against side-channel attacks. IEEE Transactions on Emerging Topics in Computing, 13(3),
1242-1258.

[10] Liu, R., Garcia, L., Liu, Z., Ou, B., & Srivastava, M. (2021, May). SecDeep: Secure and performant on-device
deep learning inference framework for mobile and IoT devices. In Proceedings of the International Conference
on Internet-of-Things Design and Implementation (pp. 67-79).

[11] Moon, M., Kim, M., Jung, J., & Song, D. (2025). ASGARD: Protecting On-Device Deep Neural Networks
with Virtualization-Based Trusted Execution Environments. In Proceedings 2025 Network and Distributed
System Security Symposium.

[12] Shen, T., Qi, J., Jiang, J., Wang, X., Wen, S., Chen, X., ... & Cui, H. (2022). {SOTER}: Guarding black-box
inference for general neural networks at the edge. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22) (pp. 723-738).

[13] Xie, X., Wang, H., Jian, Z., Li, T., Wang, W., Xu, Z., & Wang, G. (2024, May). Memory-efficient and secure
dnn inference on trustzone-enabled consumer iot devices. In IEEE INFOCOM 2024-IEEE Conference on
Computer Communications (pp. 2009-2018). IEEE.

[14] Mo, F., Shamsabadi, A. S., Katevas, K., Demetriou, S., Leontiadis, I., Cavallaro, A., & Haddadi, H. (2020,
June). Darknetz: towards model privacy at the edge using trusted execution environments. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services (pp. 161-174).

[15] Tramer, F., & Boneh, D. (2018). Slalom: Fast, verifiable and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287.

[16] Chen, H., Fu, C., Rouhani, B. D., Zhao, J., & Koushanfar, F. (2019, June). DeepAttest: An end-to-end
attestation framework for deep neural networks. In Proceedings of the 46th International Symposium on
Computer Architecture (pp. 487-498).

[17] Rouhani, B. D., Chen, H., & Koushanfar, F. (2019, April). Deepsigns: an end-to-end watermarking framework
for protecting the ownership of deep neural networks. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Vol. 3, p. 1).

[18] Chow, S., Eisen, P., Johnson, H., & Van Oorschot, P. C. (2002, August). White-box cryptography and an AES
implementation. In International Workshop on Selected Areas in Cryptography (pp. 250-270). Berlin,
Heidelberg: Springer Berlin Heidelberg.

[19] Xiao, Y., & Lai, X. (2009, December). A secure implementation of white-box AES. In 2009 2nd International
Conference on Computer Science and its Applications (pp. 1-6). IEEE.

136

A Study on White-Box Cryptography.... Han Bin Lee et al.

Author’s Biography

Hanbin Lee received his B.S. degree in Artificial Intelligence Cybersecurity from Korea University (Sejong
Campus) in 2024. He is currently pursuing his M.S. degree in the Department of Cybersecurity at the same
university. His primary research interests include RF signal analysis, anomaly detection, and ROS-based
data analysis.

Junyoung Cho received his B.S. degree in Artificial Intelligence Cybersecurity from Korea University
(Sejong Campus) in 2024. He is currently pursuing his M.S. degree in the Department of Cybersecurity at
the same university. His primary research interests include RF signal analysis, anomaly detection, and ROS-
based data analysis.

TaeGuen Kim received his B.S. degree in Electronics and Computer Engineering in 2011 and his M.S.
degree in Computer and Software Engineering in 2013, both from Hanyang University, South Korea. He
earned his Ph.D. degree in Computer and Software Engineering from the same university in 2018. He
subsequently worked as a Senior Research Engineer at Hyundai Motor Company (HMC), followed by an
Assistant Professor position at Soonchunhyang University. Since September 2024, he has been serving as
a faculty member at Korea University (Sejong Campus). His research interests include malware analysis,
Al-driven security solutions, and automotive cybersecurity.

137

