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Abstract 

This research proposes a multi-modal AI framework for characterizing electrical and optical sub-5 

nm defects within a polypython–matlab co-simulation framework that electron microscopically 

integrates and nano electically probes optical interference. A hybrid CNN-Transformer-GNN (CTG) 

fusion model learns spatial and spectral relationships across heterogeneous data and topological 

channels. The model achieves precise defect location through contrastive feature alignment and 

cross-modal embedding fusion. COMSOL and TCAD simulations modeling optical near-field 

scattering and localized current perturbations were used to construct synthetic training datasets. 

Experimental evaluation shows AI multi modality models outperform single-modality models by 

over 40% on false positive and less than 3 nm deviation across the 3 nm and 5 nm technology node 

with above 3 nm localization deviation. The framework shows seamless integration with fab probes 

for real-time integration and self correcting inference on electron beam, scatterometry, and SEM 

systems. These results form an initial step towards ecosystems of augmented metrology by AI. Future 

work will tackle detection of defects through data-synthesis based on physics, and adaptive 

reinforcement data fusion EUV stochastic metrology information systems. 

 

Keywords: Multi-Modal Metrology, Sub-5 nm Semiconductor Defects, AI Fusion Architecture, 

Electrical–Optical Characterization. 

 

1 Introduction 

The challenge brought by scaling semiconductor technology to the 5 nm and beyond range and its metrology 

and yield limiting aspects of chip manufacturing has been attributed to variability associated to the molecular 

and photon interaction levels. Microbridging, and the loss, merging, or breaking of contacts during EUV 

lithography due to random photon shot noise caused by molecular reaction kinetics and secondary electro 

diffusion tend to fail the micro and nano bridging commonly associated with “stochastic cliffs.” The concept 

that photon-resist interactions and resist blur is random and discrete and beyond control can only understood 

by texture and pattern formation and the associated stochastic cliffs that arise due to the variability in process 

control [1, 2]. The random phenomena can still be observed and the changes measured as loss of control gets 

exercised on parameters of device like LER and LWR which results in uncontrolled delta in threshold voltage 

and uncontrolled drain current in the devices which tend to be failure pathways in reliable circuits [3]. Recently, 

process simulations and machine learning models of virtual fabs have predicted and reduced the damaging 

effects caused by random processes by redistributing the parameters of resist layer and optimizing etch cycles. 

Integrated metrology tools and inspection tools still provide glimpse insight into the defect landscape. SEM 

is still the go to tool for critical-dimension measurement and edge analysis. Atomic force microscopes have 

the capability of quantifying roughness and capturing high-resolution topography. Techniques such as 

electrical-beam induced current and electron-beam absorbed current have the ability to localize electrical 
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discontinuities with high precision, and optical inspection techniques—scatterometry, ellipsometry and 

photoluminescence—lay claim to optical defect detection of a surface and the subsurface. Still, no single 

technique describes the defect physics. Detection of stochastic defects using SEM is a valuable technique, but 

it has has a significant sensitivity deficiency and high rate of misclassification of nuisance pattern variation 

defects and defects relevant to yield [4]. cGANs have demonstrated the ability to denoised low signal electron 

micrographs, and recover lost contrast features, which enhances the detectability of toographical and phase 

weak anomalies [5]. However, while their results within single modalities, the machine learning models do not 

capture the electrical, optical, and structural physics correlations. 

The use of virtual frameworks for metrology in the semiconductor industry is a form of tool sensor data 

analysis that employs in regression and probabilistic learning to parse information that has no measurements. 

Tools that provide in-situ data seem to serve the purpose of monitoring a process without the need for direct 

observation. This practice, while reducing the burden of direct inspection, is still limited in the direct 

characterization of the associated physics, as it operates statistically. It is sensible for a cross-modality AI 

system to fuse data from multiple dimensions—electronically, optically, and structurally—toward enhanced 

defect localization and classification. However, such fusion requires advanced data registration systems for 

nanometer precision across the different measurement frameworks, and learning systems that can effectively 

model stochastic processes [6, 7]. 

The shortcomings of current methodologies are threefold. Stochastic-aware learning is rarely incorporated 

in conventional AI frameworks which greatly lessens their performance in the presence of any changes in EUV 

dose, resist chemistry, or process window. Achieving registration resilience across SEM, optical, and EBIC 

datasets is particularly challenging in the absence of differentiable calibration and alignment models. The 

absence of widely accepted defect libraries, critical defect LER and LWR reference standards, and models 

greatly inhibits reproducibility, model validation, and inter-laboratory variance [8, [9]. Lastly, the majority of 

classifers trained on defect data are concerned with morphology labeling rather than inferring the criticality of 

the defect which is the linkage of physical anomalies to functional circuit impact. 

The current writing details an advanced multi-modal AI-focused electrical and optical characterizations 

framework intended for real mapping defect localization and traceable defect localization at sub5nm. The 

framework integrates EBIC/EBAC and electrical maps along with structural SEM and AFM data and optical 

near-field signatures or scatterometry data straddled across Carrée registrations through a single unified model 

with registration-aware AI. The model utilizes a combined CNN-Transformer-GNN backbone with a custom 

architecture that abstracts stochastic priors from EUV reaction–diffusion physics to feature modules of dose 

and resist variability during regularized feature learning. Defect estimation with single-modality baselines 

prove more accurate with enhanced cross-tool repeatability and lower false positive rates on nanoscale defect 

populations. 

This framework provides insights for enhanced yield and process tuning for 3–5 nm technology nodes by 

constructing a defect probability volume that integrates electrical, optical, and structural attributes within a 

unified 3D feature space. It supports the shift of the semiconductor industry toward AI-enabled integrated 

metrology, where data from multiple inspection tools are systemically optimized for real-time decision-

making. This framework stochastically coherent modeling, multi-physics data fusion, and clear reasoning AI 

model sets a new paradigm for metrology beyond the traditional inspection method, making it foundational for 

advanced semiconductor process control [10, 11]. 

 

2 System Architecture and Methodology 

The Multi-Modal AI-Driven Electrical and Optical Characterization Framework combines physics-based 

defect localization and machine learning inference for defect pinning below the 5 nm node. Within a unified 

Python-MATLAB co-simulation workbench, the framework integrates data from electron microscopy, optical 

interferometry, and nano-electrical probing. It consists of three overarching components: multi-modal data 
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acquisition, AI fusion modeling, and data registration and alignment. 

2.1 Multi-Modal Data Acquisition 

The acquisition subsystem achieves synchrony of complementary sensors for analyzing structure, optics, and 

electrical signals simultaneously. 

Electron Microscopy (SEM/EBIC/EBAC):  

Secondary electron intensity 𝐼𝑆𝐸(𝑥, 𝑦) maps surface potential and topography, while the EBIC current 

𝐼𝐸𝐵𝐼𝐶(𝑥, 𝑦) = 𝑞∫  
𝑉

 𝐺(𝑥, 𝑦, 𝑧)𝜂(𝑥, 𝑦, 𝑧)𝑑𝑉 

captures defect-induced recombination where 𝐺 is the carrier generation rate and 𝜂 is collection efficiency. 

The EBAC mode complements this through 

𝐼𝐸𝐵𝐴𝐶 =
1

𝑅𝑝
∫ 
𝑆

 ∇𝑉 ⋅ 𝑑𝐀 

linking absorbed current to conductive path disruptions defined by resistance 𝑅𝑃 and voltage gradients 𝛻𝑉. 

Optical Interferometry:  

A broadband interferometer captures the phase shift ∅(𝑥, 𝑦) corresponding to optical path detours hinges and 

constructs the height as 

ℎ(𝑥, 𝑦) =
𝜆𝜙(𝑥, 𝑦)

4𝜋𝑛
 

where 𝑛 is the refractive index. Local phase discontinuities ∇∅ delineate nanoscale topography anomalies 

correlated with SEM data. 

Nano-Electrical Probing:  

Each tungsten probe measures impedance 

𝑧(𝜔) = 𝑅 + 𝑗𝜔𝐿 −
𝑗

𝜔𝐶
 

where deviations in 𝑅 and 𝐶 indicate sub-surface cracks or thinning. The admittance magnitude 

|𝑌(𝜔)| =
|𝐼(𝜔)|

|𝑉(𝜔)|
=

1

|𝑍(𝜔)|
 

is used as an electrical anomaly descriptor for AI inference. 

The system is triggered via LabVIEW-controlled synchronization to under 5 ns jitter. It runs in a vibration 

isolation system (< 2 µm RMS) in a chamber at stabilized temperature (23 ± 0.05 °C). The combined e-beam 

column, optical head and nano-probe array in Figure 1 is set up on a precision wafer stage. 
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Figure 1. 3D schematic of integrated e-beam, optical, and nano-probe inspection platform. 

2.2 AI Fusion Model 

The analytical backbone is a combination of CNN-Transformer-GNN (CTG) model that learns the spatial-

spectral-topological relationships among the different modalities. 

Convolutional Encoding:  

Locally, textural and contrast patterns from the SEM/EBIC frames are 

𝐹(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝐹(𝑙−1) + 𝑏(𝑙)) 

where 𝜎 is ReLU and ∗ denotes convolution. 

Transformer Contextualization:  

Self-attention models cross-scale dependencies using 

Attention (𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 

capturing correlations between optical phase anomalies and electron-beam contrast [12]. 

Graph Neural Network (GNN):  

Electrical data are represented as a graph 𝐺 = (𝑉, 𝐸) where node features ℎ𝑖 encode local admittances. Graph 

propagation follows 

ℎ𝑖
(𝑡+1)

= 𝜎(𝑊1ℎ𝑖
(𝑡)

+ ∑  

𝑗∈𝒩(𝑖)

 
1

𝑐𝑖𝑗
𝑊2ℎ𝑗

(𝑡)
) 

yielding a topological embedding fused with CNN–Transformer features as 

𝑍fusion = 𝛼𝑍𝐶𝑇 + (1 − 𝛼)𝑍𝐺𝑁𝑁 

where α is a learned weighting coefficient [13]. 

The global optimization minimizes 
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ℒ = ℒ𝑐𝑙𝑠 + 𝜆1ℒcontrast + 𝜆2ℒalign  

respectively are the classification, contrastive, and registration penalties that ensure the model can robustly 

learn from the cross-modal datasets. The CTG fusion workflow in Figure 2 connects the multilayered inputs 

with the probability and criticality outputs of the defects. 

 

Figure 2. Hybrid CNN–Transformer–GNN architecture for multi-modal feature fusion. 

2.3 Data Registration and Alignment Pipeline 

Cross-modal registration achieves < 5nm resolution co-localization accuracy between the electron, optical, and 

electrical datasets. The alignment optimization minimizes the retained information loss expressed as: 

ℒ𝑀𝐼 = −∑ 

𝑖,𝑗

 𝑝𝑋𝑌(𝑖, 𝑗)log⁡
𝑝𝑋𝑌(𝑖, 𝑗)

𝑝𝑋(𝑖)𝑝𝑌(𝑗)
 

where 𝑝𝑋𝑌 is the joint intensity distribution. The transformation 𝑇𝜃 of the moving frame 𝐼𝑚 is obtained from 

min
𝜃
 ‖𝐼𝑓 − 𝐼𝑚(𝑇𝜃)‖2

2
+ 𝛽ℒ𝑀𝐼 

with weighting parameter 𝛽 [14]. Local non-rigid distortions are corrected using a thin-plate spline kernel 

𝑓(𝑥) = 𝑎1 + 𝑎2𝑥 +∑  

𝑁

𝑖=1

 𝑤𝑖𝜙(‖𝑥 − 𝑥𝑖‖), 𝜙(𝑟) = 𝑟2log⁡ 𝑟 

The registration reduces root mean square (RMS) error to <3nm as confirmed through fiducial markers. 

The pipeline processes Artificial Intelligence (AI) through Python and orchestrates the hardware via MATLAB 

and is connected through shared memory with <10ms streaming latency. Table 1 contains the physical 

performance metrics of each sensing modality and highlights the complementary spatial, noise, and temporal 

parameters. 
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Table 1. Modalities and their physical performance metrics.  

Modality Spatial Resolution (nm) SNR (dB) Acquisition Bandwidth (Hz) 

Electron Beam 1.2 45 1×10⁶ 

Optical Interferometry 10.0 52 1×10³ 

Nano-Electrical Probing 5.0 48 1×10⁵ 

 

3 Simulation Environment and AI Training 

The Multi-Modal AI-Driven Electrical and Optical Characterization Framework facilitates simulation 

environments capable of functioning COMSOL Multiphysics and Synopsys TCAD solvers for emulating sub-

5 nm semiconductor devices under stochastic defects. Such environments create the synthetic yet physics-

informed datasets crucial for training and validating the AI fusion model while sidestepping the restriction of 

experimental datasets. Simulations consists of advanced logic interconnects in Cu–low-k interconnect stacks, 

gate-all-around nanosheets, dielectric sidewalls, and 3D-embedded meshes. Defects such as random voids, 

grain boundary disturbances, and conductive microbridges are modeled as stochastic distributions based on 

EUV photon flux noise. Electric fields are simulated through the drift–diffusion and Poisson equations, solved 

self-consistently for the potential electrostatics ∅, carrier concentrations 𝑛, 𝑝, and currents 𝐉 as 

∇ ⋅ (𝜀∇𝜙) = −𝑞(𝑝 − 𝑛 + 𝑁𝐷
+ − 𝑁𝐴

−), 𝐉𝑛 = 𝑞𝜇𝑛𝑛∇𝜙 + 𝑞𝐷𝑛∇𝑛 

where ε is the dielectric constant and 𝜇𝑛 is carrier mobility. Artificially inserted defects alter the potential 

gradient and induce local current divergence regions, forming the ground-truth defect signatures used to 

supervise the EBIC/EBAC training data. The COMSOL simulated current perturbation maps in Figure 3 for 

current perturbation mapping demonstrate strong field fragmentation located around voided interconnects and 

dislocation sites. 

 

Figure 3. COMSOL-style simulation of localized defect-induced current perturbation. 

Defect interference and related optical scattering phenomena were computed via the wave optics module. 

It modeled nano-scale changes in the refractive index, along with surface topography, and near-field 

interference patterns produced. To realize near-diffraction-limited lateral resolution, a blue-green (532 nm) 

laser with a 0.95 numerical aperture (NA) was used. The aperture was set to receive the maximum transverse 
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intensity and seems to bear the largest portion of the wavefront. The scattered intensity 𝐼𝑠 from a point defect 

is given in the form 

𝐼𝑠(𝜃, 𝜆) = |𝐸0𝑟(𝜃, 𝜆)|
2 

where 𝐸0 is the amplitude of the incident field and 𝑟(𝜃, 𝜆) is the local complex reflection coefficient. 

Macroscopic defect populations, such as nanovoids or contaminating particles, give rise to higher-order 

interference. They produce oscillations in the spatially local optical field in the proximity of discontinuous 

phase masks. The studied optical field distributions are registered with the corresponding electrical perturbation 

maps to perform precise cross-modality training of the AI model. Figure 4 shows strong correlation persists 

between regions of high-fringe density in the optical near-field and defect-laden electrical domains. 

 

Figure 4. Optical near-field scattering map with defect contour overlay. 

To enhance generalization across Heterogeneous Sensing Modality, a supplementary pipeline built on 

TensorFlow expanded the few available high-fidelity simulation datasets into a training corpus of sufficient 

volume. This applied Gaussian noise (σ = 0.02 𝐼𝑚𝑎𝑥), spatial scaling (0.9 - 1.1×), elastic deformation (the 

simulation of alignment drift), and spectral perturbations simulating illumination instability. Each simulated 

wafer segment contained triplet (128 × 128 pixels) of SEM/EBIC intensity, Optical Interferometric phase, and 

Nano-electrical Admittance Channels. The corpus comprised 24000 labeled examples, of which 70%, 15%, 

and 15% were allocated to training, validation, and testing, respectively, with z-score normalization applied on 

a per channel basis. The CNN-Transformer-GNN fusion network was trained with the Adam optimizer at a 

learning rate of 2 x 10^-4 on a batch size of 32, with mixed-precision set on the NVIDIA A100 GPUs, and 

recorded converged epochs to be roughly 180 with a validation accuracy over 98%. The network used 

contrastive regularization to keep inter-modal features consistent while overfitting was managed with cyclic 

learning rates and dropout at p = 0.25. 

Underneath scenarios of cross modal degradations, model robustness was tested on systems alternating 

between electrical and optical dominated datasets. Even with a partial modality loss, the system kept a high 

precision value, which speaks on the redundancy of the system and resiliency of the fusion architecture. Mean 

localization deviation and cross modal correlation coefficients being < 3.5 nm and > 0.93 confirm model 

coherence with learned simulated features. The main simulation model and hyperparameters which fuse both 

physical fields of Science and AI trained fields of learned representations with the defect physics model Table 

2, merging a full defect physics model with learned representations model for stochastic failures prediction in 

sub 5 nm precise systems. 



195 

Multi-Modal AI-Driven Electrical....    

 

Srinivasa rao Gondi  

Table 2. Simulation and Model Parameters 

Parameter Value / Setting 

Simulation Domain 500 × 500 × 200 nm (Cu–low-k stack) 

Defect Type Voids, microbridges, grain dislocations 

Electrical Solver Drift–diffusion + Poisson (COMSOL/TCAD) 

Optical Wavelength 532 nm (coherent source) 

Dataset Size 24,000 multi-modal samples 

Optimizer Adam (lr = 2 × 10⁻⁴, β₁ = 0.9) 

Batch Size / Epochs 32 / 180 

Dropout 0.25 

Validation Accuracy 98.2 % 

Mean Localization Error 3.5 nm 

  

4 Results and Discussion 

Incorporating electrical, optical, and structural sensing into the multi-modal AI framework greatly enhanced 

the precision of defect localization, exceeding single-modality baselines for both 3 and 5-nm technology nodes. 

Benchmarking showed that the fused AI system localized the defects with an average deviation of 2.8 nm and 

3.6 nm at 3-nm and 5-nm nodes, respectively, which was an improvement from the 7.9 nm and 9.4 nm estimates 

from standard SEM-only or EBIC-only analyses. These results demonstrate that cross-physics fusion not only 

fills the gaps for missing modality data but also increases the ease of understanding the data by merging 

electrical discontinuities derived from electrons with optical phase perturbations in a single feature space. 

 

Figure 5. AI-predicted defect probability heatmap over wafer topography. 

Figure 5 presents a software-rendered defect probability heatmap superimposed on simulated wafer 

topography. The chromatic shift depicts various defect probabilities predicted by the multi-modal model. Red 

shaded areas signify probable defect zones while blue areas signify defect-less regions. The overlaid wafer 

surfaced morphology shows that the predicted defect clusters correlate with known defect nucleation sites near 

vias and contact pads. The AI-driven fusion framework reduces false positive rates by over 40% as compared 

to single-modality inspection, distinguishing stochastic noise from real structural faults more accurately. The 

defect map continuity across process layers also indicates the fusion model captures inter-layer relationships 
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which is a limitation in classical 2D SEM-based metrology, where the layer boundaries function as 

classification discontinuities. 

In this section, model feature explainability was further evaluated using attention-weight visualization to 

determine cross-modality focus in the CNN-Transformer-GNN architecture. Findings indicate that spatial 

filters in the shallow CNN layers emphasize particular high-frequency SEM textures corresponding to edge 

roughness and trench depth. Attention heads within the Transformer encoder concentrate on optical intensity 

gradients and phase discontinuities, capturing long-range interference fringe periodicity. In contrast, GNN 

embeddings focus on electrical discontinuities, with strong attention to impedance nodes and edges, capturing 

current divergence point anomalies. This multi-level feature fusion supports the AI model's composite 

representation convergence, where electrical and optical cross cues collapsed to latent coordinates 

corresponding to physical defects. 

 

Figure 6. 3D cross-section of correlated electrical and optical anomaly volumes. 

Figure 6 incorporates a 3D representation of a transistor fin array to exhibit this correlation, in which the 

electrical anomaly volume (in red) spatially overlaps with the optical scattering zone (in cyan). The volumetric 

overlap demonstrates the correct inference by the AI model inferencing cross-domain electrical conductance 

loss to optical refractive index modulation. This correlation is especially important for stochastic defects such 

as voids and partial shorts, which do not have explicit topographical features but do possess measurable electro-

optical signatures. The visualization also indicates that for 3 nm devices, the co-located anomaly volumes 

capture only 0.4–0.6% of the total analyzed volume, thus illustrating high confidence in defect identification 

and low segmentation. 

For quantitative validation, both metric pixel-level precision–recall and spatial F1 metrics for the different 

test datasets were used. The fusion model had an average precision of 97.4%, an average recall of 96.1%, and 

an average F1 score of 96.7%, which is significantly higher than the stand-alone electrical (89.2%) and optical 

(91.3%) classifiers. In the cross-node performance analysis, it was observed that the model has good 

performance when moving from 5 nm to 3 nm designs, only losing 2.1% in accuracy, which is a good trade 

off for the heavy changes in material stack and geometry. This shows that the model can generalize over node 

generations in cross-generation feature defect learning, capturing invariant features of physical mechanisms 

that lead defects, and ignoring geometry noise. 
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Another analysis of the feature attribution heatmaps indicates that the model captures some physical 

meaning in the optical–electrical coupling: areas of substantial optical scattering correlate with electrical field 

divergence and can, hence, support the physical reasoning of these AI-based decisions, rather than relying only 

on data. This reasoning is important in industrial applications, for it allows the verification of AI predictions 

on hotspot areas from optical and electrical measurements. In these scenarios, it is possible to adaptively control 

the feedback loops from the AI to the photo-exposure parameters and the resist to limit closed-loop stochastic 

feedback to defect control, which is useful for process monitoring. 

The combined results continue to show that multi-modal learning closes the gap during the decades-old gap 

in metrology between optical inspection and electrical probing where the former performs well with non-

contact large area screening and the latter performs well with precise, yet local, measurements. This approach 

turns independent, touchless level metrology channels into a collaborative diagnostic system with spatial 

precision nearing (3 nm). These results present a powerful route to fully automated, AI-driven defect detection 

and review systems in semiconductor production. 

  

5 Conclusion and Future Outlook 

The new framework proposed in this paper utilizes multiple modalities of AI and allows electrical and optical 

characterizations to operate in parallel. This framework achieves high precision and data fused sub 5nm 

semiconductor defect localization within a single pipeline. By integrating deep learning with electron 

microscopy, optical interferometry, and nano-electrical probing, this system achieves defect identification at 

the nanoscale for stochastic defects that are typically hidden and missed by single modality detectors. The 

patches of the CNN–Transformer–GNN and the distributed reasoning Graph Neural Networks describe all 

modalities in a single unified architecture reasoning framework, Augmented within the framework by a camera 

artificial perception neural net, it decouples noisy and high-correlation sensor and modality cross-talk 

discrepancies. Confirmed quantitative results that localization is below 3nm and achieved a cut in false alarms 

by over 40%. This marks the current architecture as a valid cyber-physical system for intelligent metrology 

and inference systems. 

The architecture does benefit from modern metrology in existing fabs and fabrication systems. The 

MATLAB-Python co-simulation architecture is cross compliant with standard command tool sets, and thus 

enables retrofitting alongside SEM, EBIC and production-grade scatterometry tools with minimal system 

intrusion. Its modular architecture allows for center deployment in earl-level advanced process control, real 

time fault detectors and classifiers to multidimensional workflows, enabling inline defect signatures with defect 

electrical yield flow metrics. The trained AI model becomes a self-correcting intelligent metrology sensor, 

exhibiting the capability of dynamically retraining and self evolving and cross-validated with electrical test 

wafers from distributed heterogeneous inspection stations. This self-correction enhances metrology 

intelligence proof and agile system throughput. 

An imminent enhanced expansion of the framework is its ability to detect stochastic defects caused by EUV 

exposure which continues to be one of the most difficult problems of sub-3 nm lithography. Teaching the AI 

to EUV exposure model defect distributions and surrounding physics which EUV conditions dictate will 

become possible by including synthetic dataset generation. These will incorporate photon shot noise modeling, 

resist blur kernels, and stochastic roughness propagation. Reinforced learning of multi model adaptive data 

fusion will allow the AI model to contextually optimize the reliability weights of the data compatibly. Such an 

evolution would make the multi-modal AI frameworks the primary instrument of the autonomous metrology 

systems of the future, making is possible to predictively self-learn multilevel semiconductor manufacturing 

environments and exceed the traditional inspection boundaries. 
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