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Abstract

This research proposes a multi-modal Al framework for characterizing electrical and optical sub-5
nm defects within a polypython—-matlab co-simulation framework that electron microscopically
integrates and nano electically probes optical interference. A hybrid CNN-Transformer-GNN (CTG)
fusion model learns spatial and spectral relationships across heterogeneous data and topological
channels. The model achieves precise defect location through contrastive feature alignment and
cross-modal embedding fusion. COMSOL and TCAD simulations modeling optical near-field
scattering and localized current perturbations were used to construct synthetic training datasets.
Experimental evaluation shows Al multi modality models outperform single-modality models by
over 40% on false positive and less than 3 nm deviation across the 3 nm and 5 nm technology node
with above 3 nm localization deviation. The framework shows seamless integration with fab probes
for real-time integration and self correcting inference on electron beam, scatterometry, and SEM
systems. These results form an initial step towards ecosystems of augmented metrology by Al. Future
work will tackle detection of defects through data-synthesis based on physics, and adaptive
reinforcement data fusion EUV stochastic metrology information systems.

Keywords: Multi-Modal Metrology, Sub-5 nm Semiconductor Defects, Al Fusion Architecture,
Electrical-Optical Characterization.

1 Introduction

The challenge brought by scaling semiconductor technology to the 5 nm and beyond range and its metrology
and yield limiting aspects of chip manufacturing has been attributed to variability associated to the molecular
and photon interaction levels. Microbridging, and the loss, merging, or breaking of contacts during EUV
lithography due to random photon shot noise caused by molecular reaction kinetics and secondary electro
diffusion tend to fail the micro and nano bridging commonly associated with “stochastic cliffs.” The concept
that photon-resist interactions and resist blur is random and discrete and beyond control can only understood
by texture and pattern formation and the associated stochastic cliffs that arise due to the variability in process
control [1, 2]. The random phenomena can still be observed and the changes measured as loss of control gets
exercised on parameters of device like LER and LWR which results in uncontrolled delta in threshold voltage
and uncontrolled drain current in the devices which tend to be failure pathways in reliable circuits [3]. Recently,
process simulations and machine learning models of virtual fabs have predicted and reduced the damaging
effects caused by random processes by redistributing the parameters of resist layer and optimizing etch cycles.

Integrated metrology tools and inspection tools still provide glimpse insight into the defect landscape. SEM
is still the go to tool for critical-dimension measurement and edge analysis. Atomic force microscopes have
the capability of quantifying roughness and capturing high-resolution topography. Techniques such as
electrical-beam induced current and electron-beam absorbed current have the ability to localize electrical
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discontinuities with high precision, and optical inspection techniques—scatterometry, ellipsometry and
photoluminescence—Ilay claim to optical defect detection of a surface and the subsurface. Still, no single
technique describes the defect physics. Detection of stochastic defects using SEM is a valuable technique, but
it has has a significant sensitivity deficiency and high rate of misclassification of nuisance pattern variation
defects and defects relevant to yield [4]. cGANs have demonstrated the ability to denoised low signal electron
micrographs, and recover lost contrast features, which enhances the detectability of toographical and phase
weak anomalies [5]. However, while their results within single modalities, the machine learning models do not
capture the electrical, optical, and structural physics correlations.

The use of virtual frameworks for metrology in the semiconductor industry is a form of tool sensor data
analysis that employs in regression and probabilistic learning to parse information that has no measurements.
Tools that provide in-situ data seem to serve the purpose of monitoring a process without the need for direct
observation. This practice, while reducing the burden of direct inspection, is still limited in the direct
characterization of the associated physics, as it operates statistically. It is sensible for a cross-modality Al
system to fuse data from multiple dimensions—electronically, optically, and structurally—toward enhanced
defect localization and classification. However, such fusion requires advanced data registration systems for
nanometer precision across the different measurement frameworks, and learning systems that can effectively
model stochastic processes [6, 7].

The shortcomings of current methodologies are threefold. Stochastic-aware learning is rarely incorporated
in conventional Al frameworks which greatly lessens their performance in the presence of any changes in EUV
dose, resist chemistry, or process window. Achieving registration resilience across SEM, optical, and EBIC
datasets is particularly challenging in the absence of differentiable calibration and alignment models. The
absence of widely accepted defect libraries, critical defect LER and LWR reference standards, and models
greatly inhibits reproducibility, model validation, and inter-laboratory variance [8, [9]. Lastly, the majority of
classifers trained on defect data are concerned with morphology labeling rather than inferring the criticality of
the defect which is the linkage of physical anomalies to functional circuit impact.

The current writing details an advanced multi-modal Al-focused electrical and optical characterizations
framework intended for real mapping defect localization and traceable defect localization at subSnm. The
framework integrates EBIC/EBAC and electrical maps along with structural SEM and AFM data and optical
near-field signatures or scatterometry data straddled across Carrée registrations through a single unified model
with registration-aware Al. The model utilizes a combined CNN-Transformer-GNN backbone with a custom
architecture that abstracts stochastic priors from EUV reaction—diffusion physics to feature modules of dose
and resist variability during regularized feature learning. Defect estimation with single-modality baselines
prove more accurate with enhanced cross-tool repeatability and lower false positive rates on nanoscale defect
populations.

This framework provides insights for enhanced yield and process tuning for 3—5 nm technology nodes by
constructing a defect probability volume that integrates electrical, optical, and structural attributes within a
unified 3D feature space. It supports the shift of the semiconductor industry toward Al-enabled integrated
metrology, where data from multiple inspection tools are systemically optimized for real-time decision-
making. This framework stochastically coherent modeling, multi-physics data fusion, and clear reasoning Al
model sets a new paradigm for metrology beyond the traditional inspection method, making it foundational for
advanced semiconductor process control [10, 11].

2 System Architecture and Methodology

The Multi-Modal Al-Driven Electrical and Optical Characterization Framework combines physics-based

defect localization and machine learning inference for defect pinning below the 5 nm node. Within a unified

Python-MATLAB co-simulation workbench, the framework integrates data from electron microscopy, optical

interferometry, and nano-electrical probing. It consists of three overarching components: multi-modal data
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acquisition, Al fusion modeling, and data registration and alignment.
2.1 Multi-Modal Data Acquisition

The acquisition subsystem achieves synchrony of complementary sensors for analyzing structure, optics, and
electrical signals simultaneously.

Electron Microscopy (SEM/EBIC/EBAC):
Secondary electron intensity Isg(x, y) maps surface potential and topography, while the EBIC current

Iggic(x,y) = q—f G(x,y,z)n(x,y,z)dV
v

captures defect-induced recombination where G is the carrier generation rate and 7 is collection efficiency.
The EBAC mode complements this through

1
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linking absorbed current to conductive path disruptions defined by resistance Rp and voltage gradients V.

Optical Interferometry:
A broadband interferometer captures the phase shift @(x, y) corresponding to optical path detours hinges and
constructs the height as

_Ad(x,y)
"~ 4mn

h(x,y)

where n is the refractive index. Local phase discontinuities V@ delineate nanoscale topography anomalies
correlated with SEM data.

Nano-Electrical Probing:
Each tungsten probe measures impedance

. J
=R+ jwlL — =
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where deviations in R and C indicate sub-surface cracks or thinning. The admittance magnitude
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is used as an electrical anomaly descriptor for Al inference.
The system is triggered via LabVIEW-controlled synchronization to under 5 ns jitter. It runs in a vibration

isolation system (< 2 um RMS) in a chamber at stabilized temperature (23 £ 0.05 °C). The combined e-beam
column, optical head and nano-probe array in Figure 1 is set up on a precision wafer stage.
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Figure 1. 3D schematic of integrated e-beam, optical, and nano-probe inspection platform.
2.2 Al Fusion Model

The analytical backbone is a combination of CNN-Transformer-GNN (CTG) model that learns the spatial-
spectral-topological relationships among the different modalities.

Convolutional Encoding:
Locally, textural and contrast patterns from the SEM/EBIC frames are

FO = O'(W(l) * FA=1 4 b(l))
where o is ReLU and * denotes convolution.

Transformer Contextualization:
Self-attention models cross-scale dependencies using

. QKT
Attention (Q, K, V) = softmax| — |V

Jax

capturing correlations between optical phase anomalies and electron-beam contrast [12].

Graph Neural Network (GNN):
Electrical data are represented as a graph G = (V, E) where node features h; encode local admittances. Graph
propagation follows

1
R = o[ wyh® + — W,
jew( Y

yielding a topological embedding fused with CNN—Transformer features as
Zgsion = @Zer + (1 — a)Zgnn
where a is a learned weighting coefficient [13].

The global optimization minimizes
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respectively are the classification, contrastive, and registration penalties that ensure the model can robustly
learn from the cross-modal datasets. The CTG fusion workflow in Figure 2 connects the multilayered inputs
with the probability and criticality outputs of the defects.
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Figure 2. Hybrid CNN-Transformer—GNN architecture for multi-modal feature fusion.
2.3 Data Registration and Alignment Pipeline

Cross-modal registration achieves < Snm resolution co-localization accuracy between the electron, optical, and
electrical datasets. The alignment optimization minimizes the retained information loss expressed as:

pxy (4, ))
Ly = Z pxy (i, Dlog ——~———— e Opy ()

where pyy is the joint intensity distribution. The transformation Ty of the moving frame I,,, is obtained from
. 2
meln”If — Im(To) ”2 + BLm

with weighting parameter 8 [14]. Local non-rigid distortions are corrected using a thin-plate spline kernel

N
) = +apxt ) willx = xlD), $(r) = r?log 7
i=1

The registration reduces root mean square (RMS) error to <3nm as confirmed through fiducial markers.
The pipeline processes Artificial Intelligence (AI) through Python and orchestrates the hardware via MATLAB
and is connected through shared memory with <10ms streaming latency. Table 1 contains the physical
performance metrics of each sensing modality and highlights the complementary spatial, noise, and temporal
parameters.
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Table 1. Modalities and their physical performance metrics.

Modality Spatial Resolution (nm) | SNR (dB) | Acquisition Bandwidth (Hz)
Electron Beam 1.2 45 1x108
Optical Interferometry 10.0 52 1x10?
Nano-Electrical Probing 5.0 48 1x10°

3 Simulation Environment and AI Training

The Multi-Modal Al-Driven Electrical and Optical Characterization Framework facilitates simulation
environments capable of functioning COMSOL Multiphysics and Synopsys TCAD solvers for emulating sub-
5 nm semiconductor devices under stochastic defects. Such environments create the synthetic yet physics-
informed datasets crucial for training and validating the Al fusion model while sidestepping the restriction of
experimental datasets. Simulations consists of advanced logic interconnects in Cu—low-k interconnect stacks,
gate-all-around nanosheets, dielectric sidewalls, and 3D-embedded meshes. Defects such as random voids,
grain boundary disturbances, and conductive microbridges are modeled as stochastic distributions based on
EUYV photon flux noise. Electric fields are simulated through the drift-diffusion and Poisson equations, solved
self-consistently for the potential electrostatics @, carrier concentrations n, p, and currents J as

V- (eVp) = —q(p —n+ Np — N;),J = quanVe + qD, Vn

where ¢ is the dielectric constant and p,, is carrier mobility. Artificially inserted defects alter the potential

gradient and induce local current divergence regions, forming the ground-truth defect signatures used to

supervise the EBIC/EBAC training data. The COMSOL simulated current perturbation maps in Figure 3 for

current perturbation mapping demonstrate strong field fragmentation located around voided interconnects and
J (A/em?)

dislocation sites.
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Figure 3. COMSOL-style simulation of localized defect-induced current perturbation.

Defect interference and related optical scattering phenomena were computed via the wave optics module.
It modeled nano-scale changes in the refractive index, along with surface topography, and near-field
interference patterns produced. To realize near-diffraction-limited lateral resolution, a blue-green (532 nm)
laser with a 0.95 numerical aperture (NA) was used. The aperture was set to receive the maximum transverse
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intensity and seems to bear the largest portion of the wavefront. The scattered intensity I from a point defect
is given in the form

I,(6,1) = |[Egr(6,1)|?

where E, is the amplitude of the incident field and r(8, 1) is the local complex reflection coefficient.
Macroscopic defect populations, such as nanovoids or contaminating particles, give rise to higher-order
interference. They produce oscillations in the spatially local optical field in the proximity of discontinuous
phase masks. The studied optical field distributions are registered with the corresponding electrical perturbation
maps to perform precise cross-modality training of the Al model. Figure 4 shows strong correlation persists
between regions of high-fringe density in the optical near-field and defect-laden electrical domains.
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Figure 4. Optical near-field scattering map with defect contour overlay.

To enhance generalization across Heterogeneous Sensing Modality, a supplementary pipeline built on
TensorFlow expanded the few available high-fidelity simulation datasets into a training corpus of sufficient
volume. This applied Gaussian noise (o = 0.02 I,,,,,), spatial scaling (0.9 - 1.1x), elastic deformation (the
simulation of alignment drift), and spectral perturbations simulating illumination instability. Each simulated
wafer segment contained triplet (128 x 128 pixels) of SEM/EBIC intensity, Optical Interferometric phase, and
Nano-electrical Admittance Channels. The corpus comprised 24000 labeled examples, of which 70%, 15%,
and 15% were allocated to training, validation, and testing, respectively, with z-score normalization applied on
a per channel basis. The CNN-Transformer-GNN fusion network was trained with the Adam optimizer at a
learning rate of 2 x 10"-4 on a batch size of 32, with mixed-precision set on the NVIDIA A100 GPUs, and
recorded converged epochs to be roughly 180 with a validation accuracy over 98%. The network used
contrastive regularization to keep inter-modal features consistent while overfitting was managed with cyclic
learning rates and dropout at p = 0.25.

Underneath scenarios of cross modal degradations, model robustness was tested on systems alternating
between electrical and optical dominated datasets. Even with a partial modality loss, the system kept a high
precision value, which speaks on the redundancy of the system and resiliency of the fusion architecture. Mean
localization deviation and cross modal correlation coefficients being < 3.5 nm and > 0.93 confirm model
coherence with learned simulated features. The main simulation model and hyperparameters which fuse both
physical fields of Science and Al trained fields of learned representations with the defect physics model Table
2, merging a full defect physics model with learned representations model for stochastic failures prediction in
sub 5 nm precise systems.
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Table 2. Simulation and Model Parameters

Parameter Value / Setting
Simulation Domain 500 x 500 x 200 nm (Cu—low-k stack)
Defect Type Voids, microbridges, grain dislocations
Electrical Solver Drift—diffusion + Poisson (COMSOL/TCAD)
Optical Wavelength 532 nm (coherent source)
Dataset Size 24,000 multi-modal samples
Optimizer Adam (Ir=2x 10", B:=0.9)
Batch Size / Epochs 32 /180
Dropout 0.25
Validation Accuracy 98.2 %
Mean Localization Error 3.5 nm

4 Results and Discussion

Incorporating electrical, optical, and structural sensing into the multi-modal Al framework greatly enhanced
the precision of defect localization, exceeding single-modality baselines for both 3 and 5-nm technology nodes.
Benchmarking showed that the fused Al system localized the defects with an average deviation of 2.8 nm and
3.6 nm at 3-nm and 5-nm nodes, respectively, which was an improvement from the 7.9 nm and 9.4 nm estimates
from standard SEM-only or EBIC-only analyses. These results demonstrate that cross-physics fusion not only
fills the gaps for missing modality data but also increases the ease of understanding the data by merging
electrical discontinuities derived from electrons with optical phase perturbations in a single feature space.
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Figure 5. Al-predicted defect probability heatmap over wafer topography.

Figure 5 presents a software-rendered defect probability heatmap superimposed on simulated wafer
topography. The chromatic shift depicts various defect probabilities predicted by the multi-modal model. Red
shaded areas signify probable defect zones while blue areas signify defect-less regions. The overlaid wafer
surfaced morphology shows that the predicted defect clusters correlate with known defect nucleation sites near
vias and contact pads. The Al-driven fusion framework reduces false positive rates by over 40% as compared
to single-modality inspection, distinguishing stochastic noise from real structural faults more accurately. The
defect map continuity across process layers also indicates the fusion model captures inter-layer relationships

195



Multi-Modal Al-Driven Electrical.... Srinivasa rao Gondi

which is a limitation in classical 2D SEM-based metrology, where the layer boundaries function as
classification discontinuities.

In this section, model feature explainability was further evaluated using attention-weight visualization to
determine cross-modality focus in the CNN-Transformer-GNN architecture. Findings indicate that spatial
filters in the shallow CNN layers emphasize particular high-frequency SEM textures corresponding to edge
roughness and trench depth. Attention heads within the Transformer encoder concentrate on optical intensity
gradients and phase discontinuities, capturing long-range interference fringe periodicity. In contrast, GNN
embeddings focus on electrical discontinuities, with strong attention to impedance nodes and edges, capturing
current divergence point anomalies. This multi-level feature fusion supports the Al model's composite
representation convergence, where electrical and optical cross cues collapsed to latent coordinates
corresponding to physical defects.
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Figure 6. 3D cross-section of correlated electrical and optical anomaly volumes.

Figure 6 incorporates a 3D representation of a transistor fin array to exhibit this correlation, in which the
electrical anomaly volume (in red) spatially overlaps with the optical scattering zone (in cyan). The volumetric
overlap demonstrates the correct inference by the Al model inferencing cross-domain electrical conductance
loss to optical refractive index modulation. This correlation is especially important for stochastic defects such
as voids and partial shorts, which do not have explicit topographical features but do possess measurable electro-
optical signatures. The visualization also indicates that for 3 nm devices, the co-located anomaly volumes
capture only 0.4-0.6% of the total analyzed volume, thus illustrating high confidence in defect identification

and low segmentation.

For quantitative validation, both metric pixel-level precision—recall and spatial F1 metrics for the different
test datasets were used. The fusion model had an average precision of 97.4%, an average recall of 96.1%, and
an average F1 score of 96.7%, which is significantly higher than the stand-alone electrical (89.2%) and optical
(91.3%) classifiers. In the cross-node performance analysis, it was observed that the model has good
performance when moving from 5 nm to 3 nm designs, only losing 2.1% in accuracy, which is a good trade
off for the heavy changes in material stack and geometry. This shows that the model can generalize over node
generations in cross-generation feature defect learning, capturing invariant features of physical mechanisms
that lead defects, and ignoring geometry noise.
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Another analysis of the feature attribution heatmaps indicates that the model captures some physical
meaning in the optical—electrical coupling: areas of substantial optical scattering correlate with electrical field
divergence and can, hence, support the physical reasoning of these Al-based decisions, rather than relying only
on data. This reasoning is important in industrial applications, for it allows the verification of Al predictions
on hotspot areas from optical and electrical measurements. In these scenarios, it is possible to adaptively control
the feedback loops from the Al to the photo-exposure parameters and the resist to limit closed-loop stochastic
feedback to defect control, which is useful for process monitoring.

The combined results continue to show that multi-modal learning closes the gap during the decades-old gap
in metrology between optical inspection and electrical probing where the former performs well with non-
contact large area screening and the latter performs well with precise, yet local, measurements. This approach
turns independent, touchless level metrology channels into a collaborative diagnostic system with spatial
precision nearing (3 nm). These results present a powerful route to fully automated, Al-driven defect detection
and review systems in semiconductor production.

5 Conclusion and Future Outlook

The new framework proposed in this paper utilizes multiple modalities of Al and allows electrical and optical
characterizations to operate in parallel. This framework achieves high precision and data fused sub 5nm
semiconductor defect localization within a single pipeline. By integrating deep learning with electron
microscopy, optical interferometry, and nano-electrical probing, this system achieves defect identification at
the nanoscale for stochastic defects that are typically hidden and missed by single modality detectors. The
patches of the CNN—Transformer—GNN and the distributed reasoning Graph Neural Networks describe all
modalities in a single unified architecture reasoning framework, Augmented within the framework by a camera
artificial perception neural net, it decouples noisy and high-correlation sensor and modality cross-talk
discrepancies. Confirmed quantitative results that localization is below 3nm and achieved a cut in false alarms
by over 40%. This marks the current architecture as a valid cyber-physical system for intelligent metrology
and inference systems.

The architecture does benefit from modern metrology in existing fabs and fabrication systems. The
MATLAB-Python co-simulation architecture is cross compliant with standard command tool sets, and thus
enables retrofitting alongside SEM, EBIC and production-grade scatterometry tools with minimal system
intrusion. Its modular architecture allows for center deployment in earl-level advanced process control, real
time fault detectors and classifiers to multidimensional workflows, enabling inline defect signatures with defect
electrical yield flow metrics. The trained Al model becomes a self-correcting intelligent metrology sensor,
exhibiting the capability of dynamically retraining and self evolving and cross-validated with electrical test
wafers from distributed heterogeneous inspection stations. This self-correction enhances metrology
intelligence proof and agile system throughput.

An imminent enhanced expansion of the framework is its ability to detect stochastic defects caused by EUV
exposure which continues to be one of the most difficult problems of sub-3 nm lithography. Teaching the Al
to EUV exposure model defect distributions and surrounding physics which EUV conditions dictate will
become possible by including synthetic dataset generation. These will incorporate photon shot noise modeling,
resist blur kernels, and stochastic roughness propagation. Reinforced learning of multi model adaptive data
fusion will allow the Al model to contextually optimize the reliability weights of the data compatibly. Such an
evolution would make the multi-modal Al frameworks the primary instrument of the autonomous metrology
systems of the future, making is possible to predictively self-learn multilevel semiconductor manufacturing
environments and exceed the traditional inspection boundaries.
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