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Abstract 

Cloud-native 5G core networks on Service-Based Architecture expose distributed Network 

Functions to cyber threats requiring adaptive Deep Learning-based Intrusion Detection Systems (DL-

IDS). This work evaluates six DL architectures (Convolutional Neural Network (CNN), Multi-Layer 

Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), Autoencoder (AE)) on a Kubernetes-orchestrated Open5GS testbed, 

measuring Central Processing Unit (CPU) utilization, memory consumption, and latency under 

realistic traffic conditions. Results show feedforward models (CNN, MLP, AE) achieve sub-

millisecond latency (0.6 milliseconds (ms)) with CPU below 12%, enabling multiple concurrent IDS 

instances per server, while recurrent architectures (RNN, LSTM, GRU) require high CPU utilization 

(99-107%) with 3.5 to 7.2 ms latency, necessitating dedicated hardware acceleration. Memory 

footprint remains consistent (385 to 390 megabytes (MB)) across all models. These findings 

demonstrate that operational efficiency is a key consideration for DL-IDS deployment in production 

5G networks, with substantial CPU efficiency differences between architecture choices. 
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1 Introduction 

Fifth Generation (5G) core networks implement Service-Based Architecture (SBA) with distributed Network 

Functions (NFs) deployed on container orchestration platforms [1],  [2]. This cloud-native design increases the 

attack surface compared to traditional telecommunications infrastructure, with threats including signaling 

storms [3], protocol exploitation, lateral movement between NFs, and data leakage [4]. The security 

implications extend to critical applications such as Internet of Medical Things (IoMT) devices [5], [6] and 

vehicle-to-everything communications [7], where network-based intrusion detection becomes essential. Deep 

Learning (DL)-based Intrusion Detection Systems (IDS) have emerged as effective countermeasures, offering 

advanced pattern recognition capabilities for network traffic classification [8], [9], [10], complemented by 

emerging approaches in quantum-resistant authentication [11] and lightweight anomaly detection [12]. 

While recent research has demonstrated high detection accuracy for DL-IDS in 5G environments [10], [13], 

operational deployment remains challenging due to limited understanding of computational resource 

requirements. Network operators must balance detection effectiveness against infrastructure constraints when 

deploying IDS across critical interfaces such as the Security Edge Protection Proxy (SEPP) for inter-operator 

roaming communications. Prior work on embedded IDS platforms [14] highlights trade-offs between model 

complexity and deployment constraints, yet systematic benchmarking under production-like 5G core network 
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conditions remains scarce. 

This work extends our prior research [13], which established detection accuracy for DL-IDS in 5G roaming 

scenarios, by providing comprehensive operational performance evaluation essential for production 

deployment. While the prior work validated detection effectiveness across attack classes, this study addresses 

the critical gap in understanding computational resource requirements, inference latency characteristics, and 

scalability implications that telecommunications operators need for infrastructure planning. We evaluate six 

representative DL architectures under production-like conditions using an Open5GS-based cloud-native 

testbed deployed on Kubernetes, measuring CPU utilization, memory consumption, and end-to-end latency. 

Our analysis reveals substantial performance differences between feedforward and recurrent architectures, 

with direct implications for deployment feasibility across diverse 5G core network locations. The main 

contributions of this paper are as follows: 

● Comprehensive operational benchmarking: We provide systematic performance analysis of six DL 

architectures (CNN, MLP, RNN, LSTM, GRU, AE) measuring CPU utilization, memory consumption, 

and inference latency under realistic 5G roaming traffic conditions on a Kubernetes-orchestrated testbed. 

● Quantitative deployment guidelines: We demonstrate that feedforward models achieve sub-millisecond 

latency (0.6 ms) with CPU utilization below 12%, enabling 9-11 concurrent IDS instances per server, 

while recurrent architectures require 99-107% CPU with 3.5-7.2 ms latency, establishing concrete 

metrics for infrastructure planning. 

● We provide actionable guidance for DL-IDS placement across 5G core network locations, identifying 

feedforward models for inline deployment at SEPP and NF interfaces, and recurrent models for offline 

forensic analysis. 

 

2 Background 

This section provides foundational context on 5G core network architecture, intrusion detection approaches, 

and deep learning architectures relevant to this study. 

2.1. 5G Service-Based Architecture 

The 3rd Generation Partnership Project (3GPP) specifies 5G core networks using Service-Based Architecture, 

where Network Functions communicate through standardized HTTP/2-based interfaces [1]. Key NFs include 

the Access and Mobility Management Function (AMF) for UE registration, Session Management Function 

(SMF) for session establishment, and User Plane Function (UPF) for data forwarding. For roaming scenarios, 

the SEPP serves as a security gateway between visited and home networks, handling inter-operator signaling 

over the N32 interface with mandatory TLS protection [15]. This microservices-based design enables flexible 

deployment on container orchestration platforms [2], but simultaneously expands the attack surface requiring 

comprehensive security monitoring. 

2.2. Intrusion Detection in Telecommunications Networks 

IDS for telecommunications networks have evolved from signature-based approaches to machine learning-

driven systems capable of detecting zero-day attacks [10]. Network-based IDS (NIDS) analyze traffic flows to 

identify malicious patterns, while host-based systems monitor individual NF behavior. Recent surveys identify 

deep learning as particularly effective for 5G environments due to its ability to learn complex traffic patterns 

without manual feature engineering [10]. However, production deployment requires balancing detection 

accuracy against operational constraints including latency, throughput, and resource consumption [14]. Flow-

based analysis using statistical features extracted from packet captures has emerged as the predominant 
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approach, enabling efficient processing while preserving detection capability. 

2.3. Deep Learning Architectures for Network Traffic Classification 

Deep learning architectures for IDS fall into two primary categories based on their computational structure. 

Feedforward architectures process input data in a single forward pass without maintaining internal state. CNNs 

apply convolutional filters to extract spatial patterns from flow features, while MLPs use fully connected layers 

for non-linear classification. AEs learn compressed representations of normal traffic, enabling anomaly 

detection by measuring reconstruction error for potentially malicious flows [13]. 

Recurrent architectures maintain hidden states that capture temporal dependencies across sequential inputs. 

Standard RNNs suffer from vanishing gradients during training, addressed by LSTM networks through gating 

mechanisms that regulate information flow [9]. GRUs provide a simplified alternative with fewer parameters 

while maintaining comparable modeling capability. These temporal models excel at detecting attack patterns 

that span multiple network flows but incur computational overhead from sequential state updates. 

Understanding these architectural differences is essential for selecting appropriate models based on deployment 

requirements and available computational resources. 

 

3 System Architecture and Testbed 

To evaluate DL-IDS operational performance, we developed a cloud-native testbed that replicates production 

5G roaming scenarios. 

3.1. Testbed and System Architecture 

The evaluation focuses on the SEPP within the 5G Core network. SEPP is responsible for inter-operator 

communication through the N32-f interface, secured by Transport Layer Security (TLS) 1.3 [15]. This 

deployment mirrors real roaming environments where SEPP protects signaling between operators. 

The IDS monitors roaming traffic exchanged across the N32-f link and operates as a separate pod in the 

Kubernetes cluster. This ensures controlled resource allocation and isolation from Open5GS network functions. 

Each pod is configured with defined resource quotas (1 virtual CPU (vCPU), 1 GB Random Access Memory 

(RAM)) for reproducibility and fairness across model evaluations. 

3.2. Cloud-Native Testbed Configuration 

The testbed infrastructure provides a realistic evaluation environment for IDS performance assessment. Figure 

1 illustrates our cloud-native 5G core architecture. The testbed consists of containerized Open5GS network 

functions orchestrated on MicroK8s v1.28 running Ubuntu 22.04 Long Term Support (LTS) with 4 vCPUs and 

16 GB of RAM. Calico Container Network Interface (CNI) and CoreDNS manage service discovery and 

networking. Traffic generation is handled by PacketRusher, which simulates realistic N32 roaming sessions. 

Feature extraction uses CICFlowMeter to transform packet captures into flow-based statistical features suitable 

for machine learning inference. DL models are deployed as separate pods built using PyTorch, co-located with 

Open5GS services to reproduce production-like latency conditions. 
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Figure 1. 5G Core Scenario for Testbed (Global Roaming Scenario) 

  

3.3. Dataset and Traffic Composition 

To ensure realistic evaluation, the dataset is derived from our prior work on 5G roaming intrusion detection 

and includes both benign and malicious N32 TLS traffic. Three representative attack classes are incorporated: 

● Heartbleed Exploit – an application-layer TLS vulnerability producing subtle anomalies in handshake 

payloads, difficult to detect due to low variance. 

● Denial-of-Service (DoS) – high-volume flooding of SEPP interfaces causing packet bursts and resource 

exhaustion, easily identifiable through rate-based features. 

● Network Probing – irregular session initiation and incomplete handshakes, creating sporadic flows that 

require temporal correlation to detect. 

Each class reflects a different detection difficulty level, ranging from simple volume anomalies to fine-

grained protocol misuse. The complete dataset composition, feature extraction methodology, and 

preprocessing procedures are detailed in our prior work [13]. zFlows were balanced through random 

undersampling and normalized to values between 0 and 1. This structure enables fair assessment of operational 

efficiency independent of detection bias. 

3.4. Evaluated Deep Learning Architectures 

Our evaluation includes six representative DL architectures covering both feedforward and recurrent 

paradigms, with model configurations adopted from our prior work [13]. The feedforward category comprises 

CNN, MLP, and AE, while the recurrent category includes RNN, LSTM, and GRU. The architectural 

characteristics and computational trade-offs of these model families are detailed in Section 3.3. 
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Figure 2. Performance comparison: (a) CPU utilization showing 10-fold efficiency difference, (b) Memory 

consumption demonstrating consistent footprint, and (c) Latency breakdown revealing prediction phase 

dominance in recurrent models. 

  

4 Results and Analysis 

This section presents the operational performance evaluation results, demonstrating how different DL 

architectures behave within Kubernetes-orchestrated cloud environments when processing 5G network traffic. 

4.1. Detection Performance Analysis 

All models achieve accuracy exceeding 99%, with MLP reaching 99.65% and LSTM achieving 99.55%, 

consistent with the detection results reported in our prior work [13]. This accuracy parity across feedforward 

and recurrent architectures confirms that detection capability is not the differentiating factor between model 

families [10]. Consequently, operational efficiency becomes the critical consideration for production 

deployment decisions in cloud-native 5G environments [14]. 

4.2. Operational Performance Analysis 

Table 1 and Figure 2 present the operational metrics collected from the Kubernetes-orchestrated testbed, 

revealing substantial efficiency differences across architectures. 

Table 1. Performance Comparison of ML Models for 5G Core IDS 

Model CPU (%) Memory (MB) Latency (ms) 

CNN 8.5 385.5 0.6 

MLP 9.7 386.2 0.6 

RNN 107.1 387.2 3.5 

LSTM 99.0 388.7 7.2 

GRU 101.0 389.5 6.0 

AE 11.2 389.5 0.6 

 

CPU Utilization in Containerized Environments 

Feedforward models (CNN, MLP, AE) achieve 8.5 to 11.2% CPU utilization within the 1 vCPU pod 

allocation, demonstrating efficient resource consumption compatible with Kubernetes resource quotas [2]. This 
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low utilization enables horizontal scaling through pod replication, allowing approximately 9 to 11 concurrent 

IDS instances per physical server without resource contention. Such resource efficiency is critical for cloud-

native 5G deployments where multiple security functions must coexist on shared infrastructure [10]. In 

contrast, recurrent architectures (RNN, LSTM, GRU) consume 99-107% CPU, saturating the allocated vCPU 

and preventing effective horizontal scaling. The sequential nature of recurrent computation creates a bottleneck 

that cannot be mitigated through standard Kubernetes scaling strategies [9]. 

Memory Footprint Consistency 

Memory consumption remains consistent (385--390 MB) across all architectures, indicating that the 

PyTorch runtime and model weights dominate memory usage rather than architectural differences [16]. This 

uniformity simplifies Kubernetes resource planning, as operators can apply consistent memory limits 

regardless of model selection [2]. The stable memory profile also indicates predictable behavior under 

sustained inference loads, which is essential for production containerized deployments [14]. 

Inference Latency Implications 

Feedforward models achieve sub-millisecond latency (0.6 ms), well within acceptable thresholds for inline 

traffic inspection without introducing perceptible delays to N32 signaling [15]. Security functions in 5G core 

networks must maintain low latency to preserve Quality of Service (QoS) guarantees for signaling traffic [10]. 

This latency profile supports real-time threat detection at wire speed. Recurrent models exhibit 3.5 to 7.2 ms 

latency due to sequential hidden state computations [9], making them unsuitable for latency-sensitive inline 

deployment but appropriate for batch processing of captured traffic logs [14]. 

Cloud-Native Deployment Implications 

The operational characteristics directly impact deployment architecture in cloud-native 5G networks [2]. 

Feedforward models enable inline deployment at any 5G interface without Quality of Service (QoS) 

degradation, supporting sidecar container patterns where the IDS pod runs alongside NF pods [1]. This 

deployment model aligns with microservices principles for distributed security functions [10]. Recurrent 

architectures require dedicated deployment as batch processing services, consuming traffic captures from 

persistent storage rather than intercepting live flows, which is consistent with offline forensic analysis patterns 

[14]. 

 

5 Discussion 

The operational performance results provide critical insights for deploying DL-IDS in cloud-native 5G 

environments. This section discusses practical deployment strategies, infrastructure planning considerations, 

and comparison with existing approaches. 

5.1. Cloud-Native Deployment Strategies 

The performance characteristics of each architecture family directly determine viable deployment patterns 

within Kubernetes-orchestrated 5G core networks. 

Inline Deployment with Feedforward Models 

For real-time traffic inspection at SEPP interfaces, CNN or MLP architectures are recommended due to 

their sub-millisecond latency and low CPU overhead [13]. These models can be deployed as sidecar containers 

alongside NF pods or as dedicated DaemonSet deployments ensuring IDS presence on each cluster node [2]. 

The 8-12% CPU utilization permits generous resource headroom for traffic spikes, supporting reliable 

operation in dynamic network environments [1]. Internal NF-to-NF monitoring benefits from AE models, 
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where unsupervised learning detects novel lateral movement patterns without requiring labeled attack data for 

each new threat variant [10]. For base station (gNB) access points, MLP's 0.6 ms prediction time suits high-

velocity UE connection monitoring, complementing machine learning-based false base station detection 

approaches [17]. 

Batch Processing with Recurrent Models 

Recurrent architectures (LSTM, GRU) are suited for offline forensic analysis deployed as Kubernetes 

CronJobs or batch processing pipelines [2]. These models process traffic captures stored in persistent volumes, 

leveraging temporal modeling to identify attack sequences spanning multiple flows [9]. While unsuitable for 

inline deployment due to latency constraints, their sequential analysis capability provides value for threat 

hunting and incident investigation workflows [14]. 

Infrastructure Cost Implications 

The approximately 10x CPU utilization difference between architecture families (feedforward: 8.5-11.2% 

vs. recurrent: 99-107%) has direct cost implications for telecommunications infrastructure planning [14]. 

Feedforward models enable deployment of 9-11 IDS instances per server, reducing infrastructure requirements 

for operators seeking comprehensive coverage across multiple network interfaces [10]. This resource 

efficiency is critical in cloud-native 5G environments where operational costs must be carefully managed [2]. 

Recurrent models require dedicated compute resources, increasing operational expenditure for equivalent 

detection coverage and potentially necessitating specialized hardware acceleration [16]. 

Comparison with Related Work 

Table 2 compares our operational metrics with related IDS research. Recent work has optimized inference 

latency for edge and IoT platforms: DNN-KDQ [18] achieves 0.07 ms through quantization, LSTM-CNN [19] 

reports 2.3 ms for IoT, and federated CNN [20] measures 1.4 ms with CPU monitoring on embedded devices. 

Hybrid architectures [21] and mixture of experts [22] demonstrate high accuracy but lack operational 

benchmarking. Embedded evaluations [14] characterize energy-latency trade-offs on edge hardware. However, 

none provide systematic CPU utilization metrics under Kubernetes resource quotas essential for cloud-native 

capacity planning [10]. Our work addresses this gap with container-specific benchmarks enabling horizontal 

scaling calculations for 5G deployments [2]. 

Table 2. Performance comparison with related work 

Study Model Latency CPU Deploy 

[21] Attn-CNN-LSTM 32 ms N/R Real-time 

[14] CNN/LSTM Varies Varies Edge 

[18] DNN-KDQ 0.07 ms N/R Edge 

[19] LSTM-CNN 2.3 ms N/R IoT 

[20] CNN 1.4 ms Measured IoT 

Ours CNN/MLP/AE 0.6 ms 8–12% K8s Inline 

 RNN/LSTM/GRU 3.5–7.2 ms 99–107% K8s Offline 

 

5.2. Hardware Considerations and Limitations 

This study used CPU-only inference to emulate realistic operator deployments where Graphics Processing Unit 

(GPU) resources may be limited at edge and mid-tier infrastructure [14]. Recent studies report significant 

latency reductions when models leverage GPU tensor cores and TPU systolic arrays for parallelized matrix 

multiplication. However, these improvements come with trade-offs in energy efficiency and computational 
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costs that may not be acceptable for all 5G deployment scenarios. Future work will benchmark the same 

architectures under GPU and Tensor Processing Unit (TPU) acceleration frameworks such as Torch-XLA and 

Open Neural Network Exchange (ONNX) Runtime to determine whether recurrent architectures can achieve 

sub-millisecond inference while maintaining deployment practicality [16]. 

Several additional limitations should be considered when interpreting these results. The evaluation was 

conducted on a single testbed configuration with specific resource constraints (1 vCPU, 1 GB RAM per pod), 

and performance characteristics may vary under different hardware specifications or cloud provider 

environments. The attack dataset comprises three representative classes; operational performance under more 

diverse or sophisticated attack patterns remains to be validated. Finally, the synthetic traffic generated by 

PacketRusher, while realistic, may not fully capture the variability and scale of production inter-operator 

roaming traffic. These limitations present opportunities for extended evaluation in future work. 

5.3. Future Research Directions 

Future research should explore hybrid ensemble architectures combining lightweight feedforward models for 

initial screening with recurrent models for offline analysis [23]. Federated learning in O-RAN environments 

could enable collective model improvement while preserving traffic privacy [24], addressing the challenge of 

limited labeled attack data in individual operator networks [10]. Adaptive model selection frameworks could 

optimize resources by dynamically switching between architectures based on real-time threat intelligence 

levels [25]. As 5G networks evolve toward 6G, emerging work on handover security protocols [7], [26], 

roaming security analysis [27], and M2M provisioning security [28] will require corresponding advances in 

IDS operational efficiency, with transfer learning approaches showing promise for addressing data scarcity 

challenges [8]. 

 

6 Conclusion 

This work presents systematic operational performance analysis of DL-IDS architectures for cloud-native 5G 

core networks, extending prior detection accuracy research [13] with quantitative deployment metrics essential 

for production environments. Using a Kubernetes-orchestrated Open5GS testbed, we evaluated six DL 

architectures under realistic containerized deployment conditions. 

The results reveal a fundamental operational distinction between architecture families. Feedforward models 

(CNN, MLP, AE) achieve sub-millisecond latency (0.6 ms) with 8-12% CPU utilization, enabling inline 

deployment as sidecar containers or DaemonSets without impacting 5G service quality. These models support 

horizontal scaling with 9-11 concurrent instances per server, providing cost-effective coverage across multiple 

network interfaces. Recurrent architectures (RNN, LSTM, GRU) require near-complete CPU allocation (99-

107%) with 3.5-7.2 ms latency, constraining their deployment to batch processing pipelines for offline forensic 

analysis. 

Given equivalent detection accuracy (exceeding 99%) across all architectures, operational efficiency 

becomes the decisive factor for model selection in cloud-native deployments. These findings provide 

telecommunications operators with concrete metrics for infrastructure planning, enabling informed trade-offs 

between real-time inline detection and comprehensive temporal analysis while maintaining QoS requirements 

and controlling operational expenditure. 

Acknowledgement 

This work was supported by Institute of Information & communications Technology Planning & Evaluation 

(IITP) grant funded by the Korea government (MSIT). 

 



65 

Benchmarking Deep Learning....    

 

Vincent Abella et al. 

Funding Details 

This work was supported by Institute of Information & communications Technology Planning & Evaluation 

(IITP) grant funded by the Korea government (MSIT) (RS-2024-00441484, Development of open roaming 

technology for Private 5G network). 

 

References 
[1] Brown, G.: Service-based architecture for 5G core networks. Huawei White Paper, 1 (2017) 

[2] Moreira, J. B., Mamede, H., Pereira, V., Sousa, B.: Next generation of microservices for the 5G service-based 

architecture. International Journal of Network Management, 30(6), e2132 (2020) 

[3] Zhang, B., Zeinaty, P., Limam, N., Boutaba, R.: Mitigating signaling storms in 5G with blockchain-assisted 

5GAKA. In 2023 19th International Conference on Network and Service Management (CNSM) (pp. 1-9) 

(2023) 

[4] Huth, C. L., Chadwick, D. W., Claycomb, W. R., You, I.: Guest editorial: A brief overview of data leakage 

and insider threats. Information Systems Frontiers, 15(1), 1-4 (2013) 

[5] Kim, B., Kim, Y., Lee, I., You, I.: Design and implementation of a ubiquitous ECG monitoring system using 

SIP and the zigbee network. In Future Generation Communication and Networking (FGCN 2007) (2007) 

[6] Batool, I.: Real-Time Health Monitoring Using 5G Networks: A Deep Learning-Based Architecture for 

Remote Patient Care. JMIRx Med (2025) 

[7] Kim, J., Duguma, D. G., Astillo, P. V., Park, H., Kim, B., You, I., Sharma, V.: A Formally Verified Security 

Scheme for Inter-gNB-DU Handover in 5G Vehicle-to-Everything. In 2024 IEEE International Conference on 

Communications (ICC) (2024) 

[8] Guan, J., Cai, J., Bai, H., You, I.: Deep transfer learning-based network traffic classification for scarce dataset 

in 5G IoT systems. International Journal of Machine Learning and Cybernetics, 12(11), 3351-3365 (2021) 

[9] Sahay, R., Nayyar, A., Shrivastava, R. K., Bilal, M., Singh, S. P., Pack, S.: Routing attack induced anomaly 

detection in IoT network using RBM-LSTM. ICT Express, 10(3), 459-464 (2024) 

[10] Hamroun, C., Fladenmuller, A., Pariente, M., Pujolle, G.: Intrusion detection in 5G and Wi-Fi networks: A 

survey of current methods, challenges & perspectives. IEEE Access, 40950-40976 (2025) 

[11] Ko, Y., Pawana, I. W. A. J., You, I.: 5G-AKA-HPQC: Hybrid Post-Quantum Cryptography Protocol for 

Quantum-Resilient 5G Primary Authentication with Forward Secrecy. IEEE Access (2025) 

[12] Pawana, I. W. A. J., Astillo, P. V., You, I.: Lightweight LLM-Based Anomaly Detection Framework for 

Securing IoTMD Enabled Diabetes Management Control Systems. Sensors (2024) 

[13] Pawana, I. W. A. J., Abella, V., Lastre, J. K., Ko, Y., You, I.: Enhancing Roaming Security in Cloud-Native 

5G Core Network through Deep Learning-Based Intrusion Detection System. Computer Modeling in 

Engineering & Sciences, 145(2), 2733-2760 (2025) 

[14] Slimani, C., Morge-Rollet, L., Lemarchand, L.: A study on characterizing energy, latency and security for 

Intrusion Detection Systems on heterogeneous embedded platforms. Future Generation Computer Systems, 

161 (2024) 

[15] Lastre, J. K., Ko, Y., Kwon, H., You, I.: Evaluating Transport Layer Security 1.3 Optimization Strategies for 

5G Cross-Border Roaming: A Comprehensive Security and Performance Analysis. Sensors, 25(19), 6144 

(2025) 

[16] Wang, Y. E., Wei, G.-Y., Brooks, D.: Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv 

preprint arXiv:1907.10701 (2019) 

[17] Park, H., Astillo, P. V. B., Kim, T., You, I.: 5G Native Network Function for False Base Station Detection 

Using Machine Learning Technique. IEEE Transactions on Mobile Computing (Early Access) (2024) 

[18] Mosaiyebzadeh, F., Pouriyeh, S. M., Parizi, R. M., Han, M.: Energy-efficient deep learning-based intrusion 

detection system for edge computing: a novel DNN-KDQ model. Journal of Cloud Computing, 14(1), 62 

(2025) 

[19] Hossain, M. S., Rahman, M. A., Muhammad, G.: A high performance hybrid LSTM CNN secure architecture 

for IoT environments using deep learning. Scientific Reports, 15(1), 8234 (2025) 

[20] Rahouti, M., Xiong, K., Xin, Y., Javanmard, A.: Federated Learning-Based Intrusion Detection in IoT 

Networks: Performance Evaluation and Data Scaling Study. Journal of Sensor and Actuator Networks, 14(4), 

78 (2024) 

[21] Alashjaee, A. M.: Deep learning for network security: An Attention-CNN-LSTM model for accurate intrusion 

detection. Scientific Reports, 15(1), 7706 (2025) 



66 

Benchmarking Deep Learning....    

 

Vincent Abella et al. 

[22] Ilias, L., Doukas, G., Lamprou, V., Ntanos, C., Askounis, D.: Convolutional Neural Networks and Mixture of 

Experts for Intrusion Detection in 5G Networks and beyond. Frontiers in Artificial Intelligence, doi: 

10.3389/frai.2025.1708953 (2025) 

[23] Sadhwani, S., Mathur, A., Muthalagu, R., Kumar, S.: 5G-SIID: An intelligent hybrid DDoS intrusion detector 

for 5G IoT networks. International Journal of Machine Learning and Cybernetics, 16(2), 1243-1263 (2025) 

[24] El-Hajj, M.: Secure and Trustworthy Open Radio Access Network (O-RAN) Optimization: A Zero-Trust and 

Federated Learning Framework for 6G Networks. Future Internet, 17(6), 233 (2025) 

[25] Aminu, M., Akinsanya, A., Dako, D. A., Adebayo, O.: Enhancing cyber threat detection through real-time 

threat intelligence and adaptive defense mechanisms. International Journal of Cyber Security and Digital 

Forensics, 13(3), 123-135 (2024) 

[26] Kim, J., Astillo, P. V., Sharma, V., Guizani, M., You, I.: MoTH: Mobile Terminal Handover Security Protocol 

for HUB Switching based on 5G and Beyond (5GB) P2MP Backhaul Environment. IEEE Transactions on 

Vehicular Technology (2024) 

[27] Won, T., Kwon, H., Ko, Y., Lastre, J. K., You, I.: Towards 6G Roaming Security: Experimental Analysis of 

SUCI-Based DoS, Cost, and NF Stress. Sensors (2025) 

[28] Ko, Y., Lastre, J. K., Kwon, H., You, I.: Revisiting the M2M remote SIM provisioning protocol: A 

comprehensive security and performance analysis. Journal of Information Security and Applications (2024) 

 


