
Clustering Microsoft Windows Executables
based on TF-IDF and API Information

Jonghwa Park1, Gyoosik Kim1, Youngsup Hwang2∗, and Seong-je Cho1

1Dankook University, Yongin, Gyounggi, Korea
{72150262, erewe4, sjcho}@dankook.ac.kr

2Sun Moon University, Asan, Chungnam, Korea
young@sunmoon.ac.kr

Abstract

The illegal software usage is 39% worldwide and malware is frequent in the illegal software. To
protect attacks from malware, we use software filtering. The software filtering compares equivalence
of a testing software to an original one. This requires comparison between all the legal programs in
the market. So we have to reduce the number of comparisons by clustering programs in the market.
Every market provides categories to programs such as image viewer, video player, audio player, and
messenger, etc. But it is not clear that these categories are best fit to filter malware. We suggest new
categories which are more suitable to classification experimentally. Our categories are automatically
made from the K-means clustering algorithm based on TF-IDF and API information. Experimental
results show that our clustering scheme is better than the existing categories to classify malware.

Keywords: Clustering, Windows Executable, TF-IDF, API, K-means, Random Forest

1 Introduction

According to BSA(the software alliance), 39% of software installed on computers around the world
in 2015 is not properly licensed [1]. A strong connections exists between cyberattacks and the use
of illegitimate or unlicensed software. To protect attacks from malwares, we use software filtering.
Existing software filtering systems determine a suspicious program as illegal software if the program is
identical or similar to one of programs maintained in the filtering database. It is easy to identify and
filter an illegal program if the original program is distributed without any change. However, the existing
filtering systems have limitations. If target programs are distributed as hacked (cracked, modified, etc.) or
counterfeit versions, the existing filtering systems suffer from performance degradation on determining
whether a suspicious program is the hacked or counterfeit version of its original one. Therefore, we need
a method to efficiently measure similarity between a suspicious program and one of the programs in the
database for determining whether the suspicious program is one of hacked or counterfeit versions from its
original. In this case, performance overhead highly increases if the suspicious program is compared with
all programs in the database for measuring software similarity. As a result, we have to reduce the number
of comparisons between the suspicious program and the original programs in the database. If we can
divide programs into several categories, we can reduce comparison times. Every software download site
has software categories to group programs. But it is not clear that this grouping is suitable to automatic
filtering. This paper presents a clustering scheme based on machine learning and compares this with
the original website categories experimentally. We collected programs from 9 categories of software
download sites which are most popular. Experimental results show that 7 or 9 clusters is appropriate in

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 2, Article No. 7 (August 31, 2016)
∗Corresponding author: Department of of Computer Science and Engineering, Sun Moon University, 221-70 Sunmoonro,

Asansi, Chungnam, 31460, Korea, Tel: +82-41-530-2256

1

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

this case and new clusters can be classified more accurately than the original categories. If a suspicious
program is classified into the exact cluster, our scheme can reduce the time to measure software similarity
by 1/7 or 1/9 compared to the one where any software clustering scheme is not applied.

2 Related Works

As a software birthmark reflects developer’s characteristics, it can be used a unique feature for each
program [2]. API call frequencies, weighted IDF and string information are examples of birthmarks.
There are several research works on software classification. In [9], a technique is presented that generates
software montage for Android applications using the information on API calls, strings, and URLs. Based
on the montage, applications are ranked in terms of similarity score. In the field of malware classification,
most research extracts the feature of malware by detecting malicious behavior or monitoring behavior
dynamically. In [5], malware family is classified by extracting the frequency of instructions. In [3],
malware is classified using machine learning based on the feature of behaviors such as access to file,
network and encryption. These techniques can classify malware effectively since they usually detect
specific behaviors common to the corresponding malware family. However, these techniques cannot be
directly applied to software classification because the used feature is not suitable for the functionality-
based classification, and cannot be applied to software filtering because filtering systems require fast
identification.

3 Binaries Clustering

Figure 1: Overall Process of Experiments

3.1 Collecting programs

We collected programs, windows executables, from well-known websites such as AlternativeTo, Sor-
ceforge, FileHippo and FreewareFiles that offer computer software for Windows. We also selected 9
categories- Audio Player, CD Writer, FTP, Image Viewer, Messenger, Text Editor, Video Player and Zip.

2

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

Selection criteria are popularity and familiarity. The number of collected programs for each category is
55 and the total number is 495.

Figure 2: Software website

3.2 Feature Extraction

Since a binary executable is large, we have to extract features to compare between an original program
and a pirated one to reduce comparison time. The Windows API is Microsoft’s core set of applica-
tion programming interfaces (APIs) available in the Microsoft Windows operating systems. Almost all
Windows programs interact with the Windows API. Thus the APIs and their call frequencies could be a
birthmark to show the unique characteristics of a program. We can extract the information on APIs from
.idata section. We extract IAT (Import Address Table) from .idata section and identify the name of API.
From .text section, we extract instructions by disassembling, and examine whether the opernad of CALL
or JMP instruction is the address of APIs in the IAT. Then we count the number of calls for each API.

3.3 Refining Data

The total numnber of different APIs extracted from the collected programs is about 10,000, which is
too large and they contain redundant and useless information. Hence we refined the data using TF-IDF
(Term Frequency-Inverse Document Frequency). TF-IDF reflect how important a word(i.e. an API in
this case) is to a document(i.e. a program) in a collection. TF-IDF value increases proportionally to the
number of times a word appears in the document. We use scikit-learn [6], a machine learning tool in
Python to get TF-IDF. Scikit-learn provides the TfidfVectorizer module for TF-IDF. TF-IDF is defined
in the TfidVectorizer as

t f (t,D) = logt,D+1 (1)

id f (t,D) = log
N

|{d ∈ D : t ∈ d}|
(2)

3

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

where t is a term, D is a document and N is the number of documents. Application of TF-IDF produces
a matrix which contains many ‘0’s. We reduced space as shown in the figure 3 where a row is for a
program and a column is for an API. Then we applied LSA (Latent Semantic Analysis) to make the data

Figure 3: Sparse Matrix

more meaningful and to reduce its size [8].

4 Clustering

We used K-means clustering algorithm to cluster the collected programs. Kmeans module of scikit-learn
offers options to set the number of clusters and maximum iterations. We used silhouette coefficient to
measure the clustering result [7].

s(i) =
b(i)−a(i)

max{a(i),b(i)}
, −1≤ s(i)≤ 1 (3)

where a(i) is the average dissimilarity of i with all other data within the same cluster, b(i) is the lowest
average dissimilarity of i to any other cluster, of which i is not a member. s(i) means that as it goes to 1, i
is clustered accurately. Table 1 shows silhouette coefficients and options of scikit-learn which produced
highest value as we increases the number of clusters from 5 to 12.

Table 1: Silhouette coefficient

of cluster max df sublinear tf smooth idf silhouette coefficient
5 1.0 false true 0.660
6 1.0 false true 0.692
7 0.6 false true 0.708
8 0.8 false true 0.697
9 0.7 false true 0.704
10 0.7 false true 0.682
11 0.7 false true 0.673
12 0.7 false true 0.674

When the number of clusters is 7 and 9, the silhouette coefficient is high and these mean that the
appropriate number of clusters is 7 and 9. So we analyzed the results for 7 and 9 clusters. Table 2,3
shows the number of members for each cluster when the number of clusters is 7 and 9.

4

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

Table 2: Experimental results for 7 clusters

Audio Brow-
ser

CD
Writer

FTP Image
Viewer

Media
Player

Mess-
enger

Text
Editor

Zip Total

cluster 0 13 3 6 9 9 13 10 3 6 72
cluster 1 17 0 21 7 22 11 8 16 9 111
cluster 2 6 10 0 0 3 9 4 8 0 40
cluster 3 9 10 9 17 9 10 16 15 17 112
cluster 4 4 3 17 16 9 4 4 9 20 86
cluster 5 5 19 2 6 3 2 9 3 3 52
cluster 6 1 10 0 0 0 6 4 1 0 22
Total 55 55 55 55 55 55 55 55 55 495

Table 3: Experimental results for 9 clusters

Audio Brow-
ser

CD
Writer

FTP Image
Viewer

Media
Player

Mess-
enger

Text
Editor

Zip Total

cluster 0 4 3 17 16 9 4 3 9 20 85
cluster 1 3 3 0 0 1 5 2 5 0 19
cluster 2 7 7 9 11 8 9 11 11 16 89
cluster 3 13 3 6 9 9 13 10 3 6 72
cluster 4 8 13 2 6 1 1 8 2 1 42
cluster 5 16 0 20 7 20 11 9 15 9 107
cluster 6 1 10 0 0 0 6 3 1 0 21
cluster 7 1 10 0 0 2 5 5 4 1 28
cluster 8 2 6 1 6 5 1 4 5 2 32
Total 55 55 55 55 55 55 55 55 55 495

5 Classification

To validate our clustering results, we classified programs into the created clusters and compared it with
classification with the original categories. We used random forest method in WEKA as the training and
classification tool [4]. We used the frequencies of API calls as features for random forest. The options
of random forest in WEKA are as follows; numFeatures = 500, numTrees=199, 10-fold cross validation
and the others are default. Table 4 shows the classification results for the original categories. And Table 5
and 6 show the classification results for the 7 and 9 clusters that we produced.

The F-measure for table 4 is 0.724, table 5 is 0.925 and table 6 is 0.901. Experimental results show
that the clusters we produced can classify better than the categories that are manually selected.

6 Conclusion

We proposed a software clustering scheme using machine learning. Software clustering can reduce the
number of comparisons by reducing the target programs and guess the features or similar programs of
unknown software. Software classification must use unique features and those features can be extracted

5

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

Table 4: Classification results for the original categories

A B C D E F G H I Total TP rate
A 29 1 3 2 3 5 4 5 3 55 0.527
B 0 54 0 0 0 1 0 0 0 55 0.982
C 1 0 46 0 3 1 0 3 1 55 0.836
D 1 0 1 47 0 3 0 0 3 55 0.855
E 1 1 7 1 32 2 4 2 5 55 0.582
F 2 0 1 9 1 37 2 3 0 55 0.673
G 5 5 4 4 3 0 31 2 1 55 0.564
H 5 0 4 0 0 2 1 43 0 55 0.782
I 4 0 4 2 0 3 0 0 42 55 0.764

Total 55 55 55 55 55 55 55 55 55 495
TR rate FR rate Precision Recall F-measure
0.729 0.034 0.729 0.729 0.724

where A=Audio Player, B=Browser, C=CD Writer, D=FTP, E=Image Viewer, F=Messenger, G=Text
Editor, H=Video Player and I=Zip.

Table 5: Classification results for the 7 clusters

C1 C2 C3 C4 C5 C6 C7 Total TP rate
C1 68 0 0 3 0 0 1 72 0.944
C2 0 105 1 5 0 0 0 111 0.946
C3 1 0 38 0 0 1 0 40 0.950
C4 1 4 1 105 0 1 0 112 0.938
C5 0 0 0 1 85 0 0 86 0.988
C6 0 1 8 2 0 40 1 52 0.729
C7 2 0 3 0 0 0 17 22 0.773

Total 72 110 51 116 85 42 19 495
TR rate FR rate Precision Recall F-measure
0.925 0.014 0.930 0.925 0.925

rapidly and easily. We use TF-IDF to cluster programs and use API call frequency as unique features to
classify programs. Experimental results show that the clusters produced by machine learning algorithm
can be classified more accurately than the categories manually selected. When classification is correct,
we can reduce the target programs to 1/N times faster, where N is the number of clusters.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foun-
dation of Korea(NRF) funded by the Ministry of Education(no. NRF-2015R1D1A1A02061946)

6

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

Table 6: Classification results for the 7 clusters

C1 C2 C3 C4 C5 C6 C7 C8 C9 Total TP rate
C1 85 0 0 0 0 0 0 0 0 72 1.000
C2 0 12 0 0 0 0 3 4 0 19 0.632
C3 0 1 80 1 0 3 0 0 4 89 0.899
C4 0 0 3 69 0 0 0 0 0 72 0.958
C5 0 0 2 1 38 0 0 1 0 42 0.905
C6 0 0 2 0 0 105 0 0 0 107 0.981
C7 0 1 0 0 0 0 19 1 0 21 0.905
C8 0 4 0 1 1 1 2 19 0 28 0.679
C9 0 0 6 0 5 1 0 0 20 32 0.625

Total 85 18 93 72 44 110 24 25 24 495
TR rate FR rate Precision Recall F-measure
0.903 0.013 0.901 0.903 0.901

References
[1] Unlicensed software use still high globally despite costly cybersecurity threats. http://globalstudy.bsa.

org/2016/index.html, 2016.
[2] J. Choi, Y. Han, S. je Cho, H. Yoo, J. Woo, M. Park, Y. Song, and L. Chung. A static birthmark for ms windows

applications using import address table. In Proc. of the 7th International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS’13), Taichung, China, pages 129–134. IEEE, July 2013.

[3] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho. Analysis of machine learning techniques used in behavior-
based malware detection. In Proc. of the 2nd International Conference on Advances in Computing, Control
and Telecommunication Technologies (ACT’10), Jakarta, Indonesia, pages 201–203. IEEE, December 2010.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software:
an update. ACM Special Interest Group on Knowledge Discovery and Data Mining Explorations Newsletter,
11(1):10–18, November 2009.

[5] K. S. Han, B. Kang, and E. G. Im. Malware classification using instruction frequencies. In Proc. of the
Research in Adaptive and Convergent Systems (RACS’11), Miami, Florida, USA, pages 298–300. ACM Press,
October 2011.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830,
October 2011.

[7] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 20:53–65, November 1987.

[8] D. Sin. A study on content-based information retrieval system using lsa. Master’s thesis, Seoul National
University, February 2000.

[9] H. P. Sung-Ha Choi. An automated classification technique for android application based on software montage.
Journal of KIISE: Computing Practices and Letterss, 18(11):756–761, November 2012.

——————————————————————————

7

http://globalstudy.bsa.org/2016/index.html
http://globalstudy.bsa.org/2016/index.html

Clustering Microsoft Windows Executables Park, Kim, Hwang and Cho

Author Biography

Jonghwa Park received the B.E. in Dept. of Software Science from Dankook Uni-
versity in 2015. He is currently a master student at Dept. of Computer Science and
Engineering in Dankook University, Korea. His research interests include computer
system security, mobile security, and software protection.

Gyoosik Kim received the B.E. in Dept. of Computer Science from Dankook Uni-
versity in 2016. He is currently a master student at Dept. of Computer Science and
Engineering in Dankook University, Korea. His research interests include computer
system security and mobile security.

Youngsup Hwang received the B.E. in Computer Engineering from Seoul National
Univ. in 1989, the M.E. and the Ph.D. in Computer Engineering from POSTECH
in 1991, 1997 respectively. During 1997-2002, he was a senior researcher in ETRI.
He is a professor in the department of computer science and engineering, Sun Moon
University, Korea. His research interests include pattern recognition, neural networks,
bio-informatics, machine learning and software security.

Seong-je Cho received the B.E., the M.E. and the Ph.D. in Computer Engineering
from Seoul National University in 1989, 1991 and 1996 respectively. He joined the
faculty of Dankook University, Korea in 1997. He was a visiting scholar at Depart-
ment of EECS, University of California, Irvine, USA in 2001, and at Department of
Electrical and Computer Engineering, University of Cincinnati, USA in 2009 respec-
tively. He is a Professor in Department of Computer Science & Engineering (Graduate
school) and Department of Software Science (Undergraduate school), Dankook Uni-

versity, Korea. His current research interests include computer security, smartphone security, operating
systems, and software protection.

8

	Introduction
	Related Works
	Binaries Clustering
	Collecting programs
	Feature Extraction
	Refining Data

	Clustering
	Classification
	Conclusion

