
SVM-based Android Application Classification
using API Calls

Myeonggeon Lee1, Masoud Reyhani Hamedani1, Gyoosik Kim1, Tae Kyung Kim2,
and Seong-je Cho1∗

1Dept. of Computer Science and Engineering, Dankook University
Yongin-si, Gyeonggi-do 16890 South Korea

{mglee, masoud, erewe4, sjcho}@dankook.ac.kr
2EduAI center, Dankook University

Dankook University, Yongin-si, Gyeonggi-do, 16890, South Korea
kimtk@dankook.ac.kr

Abstract

Measuring similarity between a suspicious app and the existing ones in the app store is one of the
existing mechanisms to make the app stores healthy and sustainable against pirated apps, repackaged
apps, and malware. To improve the efficiency of similarity computation between apps, it is essential
to reduce the number of apps to be compared with the suspicious one; the app classification is one of
the methods to achieve this by detecting a possible category for the suspicious app and measuring the
similarity between the suspicious app and only the apps in that category. In this paper, we propose
a technique for app classification by applying support vector machine (SVM). We extract API calls
as a feature for classification from the apps bytecode, consider two candidate features, classes and
methods related to API calls, and carefully analyze which of them is more beneficial for app clas-
sification. In order to evaluate our technique, we conduct extensive experiments with a real-world
dataset.

Keywords: Application classification, API call, SVM, Android app, App similarity

1 Introduction

Among existing smartphone operating systems such as Android, BlackBerry, iOS, and Windows Mobile,
Android is the most widely used in the market. There are millions of Android applications (in short, apps)
in official Google Play Store[3] and third-party stores; on February 2017, there were 2.7 million apps on
Google Play Store, and more than 600,000 apps on Amazon App Store[1, 10]. The store managers cannot
adequately review and check all the released apps in the store; more specifically, there are a large number
of pirated or malicious apps available in the stores[11]. The apps are easy to be reverse-engineered and
repackaged due to Java bytecode characteristics. By taking advantage of this property, attackers reverse
engineer benign apps, insert pirated or malicious codes into the original codes, repackage the apps, and
redistribute them through the app stores or blog.

Therefore, detecting pirated software, variants of existing malware, and repackaged apps are some
of the serious problems in app stores where computing the similarity between apps is one of the key
techniques to solve the aforementioned problems.

A similarity computation method measures the similarity by comparing the features extracted from a
benign app with the features extracted from a suspicious app to decide whether the suspicious app is an

Research Briefs on Information & Communication Technology Evolution (ReBICTE), Vol. 3, Article No. 18 (November 15, 2017)
∗Corresponding author: Department of Computer Engineering, Dankook University, Yongin-si, Gyeonggi-do, 16890, Ko-

rea, Tel: +82-31-8005-3239

1



SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

illegal copy of the benign app or a malicious one. For similarity computation, it is important to reduce the
number of apps to be compared with the suspicious app in order to improve the efficiency and scalability.
One effective strategy is to classify apps in bytecode or binary level[4, 12, 13, 14].

In this paper, we propose an effective method for app classification based on the support vector
machine (SVM) where the API calls are used as a feature. Our motivation is that API calls is helpful and
unique information, which clearly represent the app’s functionalities and behaviors [7, 15]; for example,
an app cannot read SMS or access to the camera without invoking particular APIs. We demonstrate the
effectiveness of our method by conducting extensive experiments with a real-world dataset, which is
constructed based on Google Play Store.

2 Related Work

In reference[13], the API calls, strings, and URL information are extracted from the apps as the features
for classification. For each feature, the apps are ranked according to which categories they belong to,
and the categories were grouped together. Although this study considers the possibility of classifying
the apps based on the static features extracted from the apps themselves, the size of the experimental
dataset is too small (i.e., only 12 apps) and experiments are only conducted with the ”weather” category.
In reference[14], 42 apps are categorized into 11 categories where strings are utilized as the feature.
In the preprocessing step, extracted strings are indexed by using information retrieval (IR) techniques,
and important words are selected for each category through weighting, threshold, and Latent Dirichlet
Allocation (LDA) analyzing. Using the selected words, the apps are classified into different categories
by measuring the similarity of the apps. The classification result are compared with the manual analysis
of the apps. In reference [12], the apps are classified by applying machine learning techniques to both
strings and permissions as the features. The employed dataset contains 820 apps, which are categorized
into seven categories. The classification is performed and evaluated by utilizing four different machine
learning techniques as Naive Bayesian, Decision Trees, K-Nearest Neighbor (KNN), and Support Vector
Machine (SVM). Reference [4] proposes Naive Bayesian modeling based on the permissions as the
feature to classify apps. Through this, a comparison is made between malicious and benign apps.

Androguard is an open-source and static analysis tool for reverse engineering Android apps which
can create control flow graphs for each method [5, 6]. It can find similarities and differences in code
between two apps by computing Normalized Compression Distance (NCD) between each method pairs.
It then shows IDENTICAL, SIMILAR, NEW, DELETED and SKIPPED methods of first app compared
to another one. Androidguard can also find similarities and differences between two methods by convert-
ing each unique instruction in basic block of methods into a string and then applying Longest Common
Subsequence (LCS) algorithm on these strings of two basic blocks. In addition, Androgurad can used to
detect a repackaged app.

Juxtapp is a static and scalable infrastructure to analyze code similarity of Android apps [8]. It
can group the unlabeled classes.dex files of apps based on some predefined criteria, in order to reduce
the comparison overhead. As feature for the criteria, Juxtapp considered k-grams of various opcode
sequence patterns within each basic block of the app. It can determine whether apps contain copies of
buggy code, and detect various code reuse cases such as software piracy, instances of known malware,
and code repackaging. This work has a limitation that it does not perform evaluation in terms of false
negative rate [9].

2



SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

Figure 1: An overview of our proposed method.

3 Proposed Method

The Android platform provides a collection of APIs that are used by apps to interact with the under-
lying Android system and the smartphone[7]. Android developers write apps by invoking appropriate
APIs to implement the functionalities of the apps; API calls can clearly capture the app’s behaviors and
functionalities [7]. Therefore, in our method, we utilize the API calls as a useful feature for classifying
apps based on their functionalities. As shown in Figure 1, we consider API-classes and API-methods
as two candidate features associated with the API calls. In this paper, the API-classes and API-methods
mean the Java classes and methods used in the target Android apps respectively. Then, SVM is applied
to both of the two candidate features. Through experiments, the one feature of them showing the better
performance in app classification is being finally selected as the representative feature of the API call
information.

3.1 Feature Extraction

We extract the API calls based on the information obtained from app itself and the Android platform. A
typical app contains different files and folders that are packaged into a single Android Package (APK),
an archive file type easily extractable by any archiving software [7]. The classes.dex is an important file
in an APK that contains the app’s bytecode where the API calls can be minded from; the classes.dex file
contains identifiers for all the methods, user-defined methods and APIs, referred to by the app. We also
construct a list of all the available APIs in the Android platform by crawling the Android Developers
Site[2]. By using the constructed Android API list, we filter out the list of all the available methods in
the app as follows. We neglect the user-defined methods and support libraries for the following reasons.
The user-defined methods do not contribute to the app classification because they have their own names
selected by the developer, and the support libraries are widely used by lots of apps regardless of the
apps functionalities. The API-class candidate contains only the names of APIs’ owner classes, while
API-method candidate contains the APIs themselves.

Table 1 shows an abstract view of our dataset. Each row represents an app and contains its name,
category, and feature values as api 1 to api n; if the app contains feature value api i, the content of the
corresponding column will be 1, otherwise 0.

3



SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

3.2 Analytical Method

We apply SVM to both API-class and API-method candidates to analyze their effectiveness in apps clas-
sification. We note that in our dataset, the apps are assigned to categories based on their functionalities.
Therefore, it is possible that more than one category are assigned to some apps; for example, an app
that belongs to the ‘News & Magazines’ category can also belong to the ‘Books & Reference’ category.
Therefore, for each app, we select the top-k appropriate categories.

4 Experimental Evaluation

Table 2 represents the statistics about our dataset collected from Google Play between December 2016
and July 2017; there are 4,724 apps, which are divided into 12 categories. For the case of the dataset,
the number of classes and methods used as features is 2,286 and 30,588 respectively. In order to provide
a comparison of two features, we have classified Android apps using SVM classifier implemented in
scikit-learn, a popular machine learning library. Scikit-learn is an open source machine learning library
written in the Python programming language. App classification has been performed by the SVM with a
Radial Basis Function (RBF) kernel.

Table 3 shows the results of classification with the API-class feature. In the verification process,
the accuracy is calculated by applying the 10-fold cross validation on top-k categories. When k is 1, the
accuracy is 41.95%; however, as k increases, the accuracy increases sharply as well. The reason is that
there are some apps belonging to more than one category as explained in Section 3.2.

Table 4 shows the results of classification with the API-method feature. As k increases, the accuracy
also increases as observed with the API-class feature.

Figure 2 illustrates the accuracy of classification with both features on k as 1, 2, 3, 4, and 5. As
observed in the figure, the accuracy of classification with API-class is slightly (4%) higher than that of
the API-method feature.

5 Conclusion and Future Work

In this paper, we have proposed a technique for classifying Android apps in order to enhance the effi-
ciency of app similarity computation. In our technique, we select API call information as the feature
for machine learning and utilize SVM with the RBF kernel for classification. In our experiment, Java
classes and methods used by the target Android apps are selected as a possible feature. According to our
experimental results, the class-based feature shows better accuracy than the method-based feature for the
app classification. Because there are some apps belonging to more than one category at the same time in
our dataset, we have classified an app as one category or more than one categories where k ranges from
1 to 5. As the k increases, the accuracy of classification also increases.

We have begun studies on app classification for efficient software similarity computation. For future
work, we plan to select other effective features including permission or string information employed in

Table 1: An abstract view of our dataset
Name Label(category) api 1 api 2 ... api n
app 1 Art & Design 0 0 1
app 2 Finance 0 1 1

... ... ... ... ... ...
app m Productivity 1 0 0

4



SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

Table 2: Some statistics about our dataset
Category # of app

Art & Design 446
Books & Reference 486

Finance 337
Library & Demo 467

News & Magazines 439
Personalization 327

Photography 301
Productivity 271

Shopping 348
Travel & Local 443
Video Players 449

Weather 410

Table 3: Result of classification with API-class
top-k Accuracy

1 0.4195
2 0.6053
3 0.7069
4 0.7886
5 0.8503

related works, and use other kernels for SVM and machine learning algorithms such as random forest,
neural network, etc.

Acknowledgment

The present research was supported by (1) Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the Ministry of Education (no. NRF-2015R1D1A1A02061946),
and (2) the research fund of Dankook University in 2017.

References
[1] amazon. https://www.amazon.com/ [Online; Accessed on October 3, 2017].
[2] android developer. https://developer.android.com [Online; Accessed on October 3, 2017].

Table 4: Result of classification with API-method
top-k Accuracy

1 0.3584
2 0.5599
3 0.6609
4 0.7440
5 0.8094

5

https://www.amazon.com/
https://developer.android.com


SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

Figure 2: Accuracy of classification depending on top-k.

[3] google. http://play.google.com/apps [Online; Accessed on October 3, 2017].
[4] J. AH and L. AC. Android app categorization using naı̈ve bayes classifier. International Journal of Computer

Applications, 122(3), 2015.
[5] A. Desnos. Androguard: Reverse engineering, malware and goodware analysis of android applications... and

more (ninja!), 2015. http://code.google.com/p/androguard [Online; Accessed on October 3, 2017].
[6] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan. Android security: a

survey of issues, malware penetration, and defenses. IEEE communications surveys & tutorials, 17(2):998–
1022, 2015.

[7] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab. A review on feature selection in mobile malware
detection. Digital Investigation, 13:22–37, 2015.

[8] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song. Juxtapp: A scalable system for detecting code
reuse among android applications. In Proc. of the 9th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’12), Heraklion, Crete, Greece, LNCS, volume 7591,
pages 62–81. Springer, Berlin, Heidelberg, July 2012.

[9] H. Huang, S. Zhu, P. Liu, and D. Wu. A framework for evaluating mobile app repackaging detection algo-
rithms. In Proc. of the 6th International Conference on Trust and Trustworthy Computing (Trust’13), London,
UK, LNCS, volume 7904, pages 169–186. Springer, Berlin, Heidelberg, June 2013.

[10] S. Inc. Number of apps available in leading app stores as of march 2017. https://www.statista.com/

statistics/276623/number-of-apps-available-in-leading-app-stores [Online; Accessed on
October 3, 2017], March 2017.

[11] S. luo and P. Yan. Fake apps feigning legitimacy. Mobile Threat Research Team published on A Trend Micro
Research Paper, 2014.

[12] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, and P. G. Bringas. On the automatic categorisation of
android applications. In Proc. of the 2012 IEEE Consumer Communications and Networking Conference
(CCNC’12), Las Vegas, Nevada, USA, pages 149–153. IEEE, January 2012.

[13] C. Sung-Ha and P. Heewan. An automated classification technique for android application based on software
montage. KIISE transactions on computing practices, 18(11):756–761, 2012.

6

http://play.google.com/apps
http://code.google.com/p/androguard
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores


SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

[14] C.-Z. Yang and M.-H. Tu. Lacta: An enhanced automatic software categorization on the native code of
android applications. In Proc. of the international multiconference of engineers and computer scientists
(IMECS’12), Hong Kong, China, volume 1, pages 769–773, March 2012.

[15] M. Zheng, M. Sun, and J. C. Lui. Droid analytics: a signature based analytic system to collect, extract,
analyze and associate android malware. In Proc. of the 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom’13), Melbourne, Victoria, Australia, pages 163–
171. IEEE, July 2013.

——————————————————————————

Author Biography

Myeonggeon Lee received the B.E. and the M.E. degree in Dept. of Software Sci-
ence from Dankook University, Korea in 2015 and 2017 respectively. He is currently
a Ph.D. student at Dept. of Computer Science and Engineering in Dankook Univer-
sity, Korea. His research interests include computer system security, SCADA system
security, mobile security.

Masoud Reyhani Hamedani received the B.E. degree in Dept. of Computer Sci-
ence from Shahid Bahonar University of Kerman, Iran in 2004, and the M.E. degree
in Dept. of Computer Engineering from Payame Noor University, Iran in 2009, the
Ph.D. degree in Dept. of Computer Science at Hanyang University, Korea in 2016. He
is currently a Postdoctoral researcher in Dept. of Computer Science and Engineering
at Dankook University, Korea. His current research interests include knowledge En-
gineering, enterprise software design and development, web application development,

and data mining.

Gyoosik Kim received the B.E in Dept. of Applied Computer Engineering from
Dankook Univeristy in 2016. He is currently a master student in Dept. of Computer
Science and Engineering at Dankook University, Korea. His research interests include
computer system security, mobile security, and software.

Tae Kyung Kim received the B.S. degree from the Department of Applied Computer
Engineering, Dankook University, Korea, in 2015 and the M.S. degree from the De-
partment of Computer Scinece and Engineering, Dankook University, Korea in 2017.
His research interests include machine learning and computer vision, and their appli-
cations.

7



SVM-based Android Applications Classification using API Calls Lee, Hamedani, Kim, Kim, and Cho

Seong-je Cho received the B.E., the M.E. and the Ph.D. in Dept. of Computer En-
gineering from Seoul National University in 1989, 1991 and 1996 respectively. He
joined the faculty of Dankook University, Korea in 1997. He was a visiting scholar at
Department of EECS, University of California, Irvine, USA in 2001, and at Depart-
ment of Electrical and Computer Engineering, University of Cincinnati, USA in 2009
respectively. He is a Professor in Department of Computer Science and Engineer-
ing (Graduate school) and Department of Software Science (Undergraduate school),

Dankook University, Korea. His current research interests include computer security, smartphone secu-
rity, operating systems, and software protection.

8


	Introduction
	Related Work
	Proposed Method
	Feature Extraction
	Analytical Method

	Experimental Evaluation
	Conclusion and Future Work

