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Abstract

In 1982, Andrew Yao introduced secure two-party computation (2PC) for the so-called millionaire’s
problem. The problem is about two millionaires Alice and Bob, interested to determine who is
wealthier without revealing their actual private property values. Goldreich generalized the secure
two-party computation and formalized the secure multi-party computation. Suppose two telephone
companies wish to merge to provide better services to end users. Each company has a cost function
for connecting any pair of houses. They want to connect every house with minimum cost in merged
company. Mathematically, given two graphs G1,G2 they want to compute MST(min(G1,G2)). Before
merging both companies they want to know whether merging will benefit them or not without revel-
ing cost function for any pair of houses. Based on the secure multi-party computation paradigm, we
propose new algorithms for privacy-preserving computation of minimum spanning tree. Our proto-
cols offers security against semi-honest adversaries.
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1 Introduction

In 1982, Andrew Yao [13] introduced secure two-party computation (2PC) for the so-called millionaires’
problem . The millionaires’ problem is about two millionaires Alice and Bob, interested to determine
who is wealthier without revealing their actual private property values. Yao has presented a constant
round protocol in a stable manner for computing a set of two-party functionality in semi-honest model
adversaries. Goldreich et al. [7] generalized the secure two-party computation and formalized the secure
multi-party computation. The mathematical model for secure multi-party computation formally defined
as : parties P1,P2, ...Pn want to jointly compute the function y = f(x1,x2, ...,xn) without revealing the
secret value xi to each other.

In Asiacrypt 2005, Justin Brickell et al. [3] presented privacy-preserving all pairs shortest path
algorithm and single source shortest path algorithm in semi-honest model. They investigated the problem
by taking two internet providers (mutually distrustful parties) each having their private networks and
wish to merge with each other to compute efficient joint graph network. Abdelrahaman Aly et al. [1]
presented shortest path and maximum flow problems with the help of Arithmetic Black-Box functionality
in secure multi-party computation environment. Tomas Toft [12] presented secure data structures based
on multiparty computation with the Arithmetic Black-Box functionality.

Suppose two telephone companies wish to merge to provide better services to end users. Each com-
pany has a cost function for connecting any pair of houses. They want to connect every house with
minimum cost in merged company. Mathematically, given two graphs G1,G2 they want to compute
MST(min(G1,G2)). Before merging both companies want to know whether merging will benefit them or
not without reveling cost function for any pair of houses.
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Contribution: Working with secure multi-party computation paradigm, we present new algorithms
of minimum spanning tree for combined graph (G1,G2) with out revealing cost functions of the graphs
to each other. The algorithms are privacy-preserving version of minimum spanning tree algorithms
(Kruskal’s and Prim’s) in semi-honest model. The technique is belonging to the family of the crypto-
graphic idea of secure multi-party computation in a privacy-preserving manner. We used Yao’s [14, 8]
protocol as a sub-protocol to compute minimum in our scheme.

2 Preliminaries

This section describes basic definitions that are required to understand our scheme.

Negligible: We may conclude that a negligible function denoted as negl(n) in n, if it is small value
than the inverse of any other polynomial function in n for large n. Mathematically, function f(n) is neg-
ligible function if f(n) = o(nc) for all the constant c and n ≥ n0, where o is standard little-oh notation.

Computational indinstinguishability: Let {Xp}p and {Yp}p be ensembles where Xp’s and Yp’s are
probability distributions over {0,1}l(s) for some polynomial value l(s). We can say that {Xp}p and {Yp}p

are computationally indistinguishable if for all the non-uniform probabilistic polynomial time {Dp}p∈N ,
there must exist a negligible function ε such that for all p ∈ N such that

|Pr[k← Xp : D(k) = 1] - Pr[k← Yp : D(k) = 1]| ≤ ε(p).

In this particular case we will write X
c≡ Y.

2.1 Secure two-party computation

Andrew Yao in 1982, introduced the concept of secure two-party computation (2PC) for the so-called
millionaires’ problem. The main goal of two-party computation is creating a generic protocol that have
two parties to combine and calculate an arbitrary function on their related private input values without
leaking the secret values to each other. The best well known examples of two-party computation is Yao’s
millionaire problem, in this two parties, Alice and Bob, are millionaires wishing to determine who is
richer without revealing their actual wealth details.

As a stepping stone of our constructed algorithms, we deployed privacy preserving protocols for
calculation of minimum that is min(p,q). In this we are using the Yao’s protocol as a sub protocol which
is used for calculating private minimum of P1 and P2, that is m = min (m1, m2). The definitions for
different settings of secure two-party computation are found in [2, 4, 6].

2.2 Secure multi-party computation

Consider the setting, where a collection of n number of parties P1, ...,Pn wish to compute a joint function
f on their n respective private input values and receive the resulting output values. The problem statement
of secure computation is to guarantee the security of this function evaluation in the existence of semi-
honest adversary model. The security guarantees here would be to ensure correctness of the output and
secrecy of the data held by the parties.

Let us formalize what happens in the real world. All parties interact with each other according to
the protocol specification in the presence of a real-life adversary model who controls a certain set of n
number of parties. At the end of the computation, the parties which are not corrupted, output no matter
what is specified in the protocol. The adversary, controlling the corrupted parties, outputs some arbitrary
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random value. This value may be including information about that the adversary gathered during the
computation.

Let f be a randomized functionality from n number of inputs to n number of outputs (i.e.) f :
({0,1}∗)n→ ({0,1}∗)n. A protocol λ computes f if, when parties P1, ...,Pn run λ on inputs k,x1, ...,xn,
they output y1, ...,yn that is distributed according to the output function f (x1, ...xn). The definitions for
different settings of secure multi-party computation are found in [2, 4, 6]. With the help of oblivious
transfer [10, 11] and secure function evaluation [9] it can be implemented easily.

2.2.1 Central properties of MPC

• Privacy: Only the prescribed output will be revealed. No other party should learn nothing more
than its specified out-put. In general, if n number of parties are interacting with each other to
compute an arbitrary function, the other opponent parties know about the final output of the service
rather than private values of the others.

• Correctness: This property says that each party was receiving correct output. That means all
the parties that are involved in a secure function evaluation they are guaranteed to get the correct
output.

• Independence of Inputs: In this, the inputs of the corrupted parties should be chosen independently
from the honest party inputs. Let us take a simple example case of auctions. This property is
critical in a sealed secure auction when bids are kept secret and secure, and parties fix their inputs
independently of the others.

• Guaranteed Output Delivery: In this property even though the corrupted parties applying denial of
service attack, it must produce guaranteed output. The output is delivered to honest parties even in
the presence of corrupted parties. We say that adversary could not be able to prevent vague parties
from receiving their respective output.

• Fairness: This says that the corrupted party can receive the output if and only if the original party
receives the respective output. The meaning of this is if one party receives the output then all the
parties will receive. Let us consider a corrupted party gains output as contract signing, and the
original party does not receive, this is not the fair case, it is a crucial property. Both the guaranteed
output delivery and fairness are almost similar.

2.2.2 Adversarial behavior in MPC

• Semi-honest adversaries: The adversary can study the internal information of the corrupted parties.
These are also called as passive adversarial models. In this dishonest parties also exactly follows
the specification of the protocol. While executing transcript messages in the protocol, there is a
chance of leaking additional information by attempts to learn. It is a weak adversary model. These
are also named as ”honest-but-curious.”

• Malicious adversaries:

The adversary can take complete control over the parties and can make them (mis)behave in any
desired manner. In the malicious model, restrictions are not placed on any of the participants. Thus
parties are completely free to spoil the actions that are placed in the protocol. These are ”active”
adversaries. These are very stronger than the semi-honest adversaries model. These adversaries
will deviate from the protocol execution. It is difficult to provide security when malicious adver-
saries exist, however with strong protocol scheme we can overcome these type of adversaries. Let
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us consider the interaction between different intelligence agencies; for the sake of security, they
wouldn’t give free accessing to the confidential data.

2.2.3 Applications/Examples of MPC

• Secure Auction: Every party having a bid amount as a private input data. Goal of this action is
to compute maximum bid among several bid’s and revealing the final winner bid amount only
nothing other than that.

• Satellite Collision: In 1994 two satellites collided resulting a big loss to two countries. The orbit
information of a satellite is private information owned by a country. To prevent collision from
different satellites in the orbit, the goal is to make the collision probability to zero without leaking
exact accurate information of satellites.

• Privacy Preserving Data Mining: Hospitals have patient information which is private data. Many
hospitals wants to know the exact count of patients who are suffering from a particular disease
without revealing patient information.

2.3 Security model for two party protocol for semi-honest adversaries:

The security model for two party setting protocol in the existence of semi-honest adversaries is adapted
from Yao [14] and Goldreich et al. [6]. The definition is formalized according to simulator paradigm. If a
protocol is simulated based on input and output of the parties those who are participating in the protocol,
then the parties in the protocol learns nothing. Intuitively a protocol can be secure, if the parties view in
a protocol can be simulatable given only that party’s input and output.

2.3.1 Notations:

We used the list of notations that are prescribed below for the definition of privacy.

• Let us take probabilistic polynomial time function F = (F1,F2) and let λ is a two-party protocol
that computes F.

• The view of party i while executing λ on (p,q) is denoted as viewλ
i (p,q), where i ∈ {1,2}.

• The output of party i while executing λ on (p,q) is denoted as out putλ
i (p,q), it can be calculated

from its original own view of the execution.

Protocol λ computes securely the deterministic functionality f in the existence of static semi-honest
adversaries if there exist non uniform probabilistic polynomial time simulators S1 and S2 such that

{S1(p, f (p,q))}p,q∈{0,1}∗ ≡ {viewλ
1 (p,q)}p,q∈{0,1}∗

{S2(q, f (p,q))}p,q∈{0,1}∗ ≡ {viewλ
2 (p,q)}p,q∈{0,1}∗

here |p|= |q|.

3 Our Privacy-Preserving Minimum Spanning Tree Algorithms on Joint
Graphs

Now we present the construction of privacy preserving minimum spanning tree algorithms in semi honest
adversary model. Let us assume there are two private parties named as G1 and G2 with strictly positive
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edge costs, let G1 = (V1,E1) and G2 = (V2,E2) be two complete connected graphs with equal number
of vertices and equal number of edges but with different edge costs. The incomplete graphs are allowed
with ∞ assigning to their edge cost.

Suppose two different telephone operated cell phone companies wishing to merge with each other,
each company is having private network in terms of cost function value connecting any number of pair
of houses in the city. They want to connect every individual house with least cost in merged company
without revealing their original cost value of the function for connecting the pair of vertices (houses).
The solution to this problem is constructing Minimum Spanning Tree from the joint graph. Our first
proposed algorithm is built on the concept of Kruskal’s and the second proposed algorithm is built on the
Prim’s concept.

3.1 Privacy Preserving Minimum Spanning Tree using Kruskal’s (PPMSTK)

The minimum spanning tree is a classical graph theory problem that is used to find minimum spanning
tree in between all the vertices that are present in a connected weighted graph [5]. Spanning tree is
defined as sub graph G′ = (V ′,E ′,w′) of the given connected weighted main graph G=(V, E, w) which
covers all the vertices with n-1 edges without forming cycles. Minimum Spanning Tree is defined as
same as spanning tree with minimum edge costs. If a graph is given with strictly positive weighted
edges, the minimum spanning tree is set of edges with the minimum weight which satisfies tree properties
connected, acyclic and consists of |v|-1 edges.

The basic idea of our problem is let G1 = (V1,E1) a graph of first party and G2 = (V2,E2) a graph
of the second party be the graphs corresponding to two different telephone companies. Our algorithm
computes minimum spanning tree from graph G1 and graph G2 without revealing weights of graph to
each other.

Our Scheme:

1. We used a variable k for the convenience of the notation, it is set to 0, it describes iteration count.

2. Both the parties in their respective private graphs, privately compute the minimum length

m(k)
1 = minimum{w1(eG1)} (1)

m(k)
2 = minimum{w2(eG2)} (2)

3. Using Yao’s privacy-preserving generic minimum protocol, compute the smallest edge. This does
not reveal about other values

m(k) = min{m(k)
1 , m(k)

2 } (3)

4. Create a public graph and mark it with the min edge in step 3 to find MST T, initially T is empty

5. If cycle does not form, add min edge to T i.e T = {T ∪ m}, increment k value and go to step 2 to
find next minimum edges of the private graphs.
Else discard the selected minimum edge m.

6. Repeat this process until k < n-1.

The final graph is MST using kruskal’s in privacy preserving manner.

Correctness: To prove this algorithm is correct, it is already known that kruskal’s algorithm is correct,
we used the same concept here therefore our scheme is also correct.
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Our algorithm preserves privacy in semi-honest adversary model.
Proof (Privacy). We have to prove that real transcript of our private minimum protocol and simulated

transcript of a private minimum protocol are computationally indistinguishable. As it is already proved
that Yao’s two-party protocol preserves privacy i.e real transcript of the two-party protocol of Yao and
simulated transcript of the two-party protocol of Yao are computationally indistinguishable.

Here we will show that if our protocol does not preserve privacy in semi-honest adversary model
then Yao’s two-party protocol also does not preserve privacy in semi-honest adversary model. Since we
know that Yao’s two-party protocol preserves privacy, so our protocol also preserves privacy.

Let us describe a simulator for P1, the simulator is given P1’s input to the protocol, the output of the
protocol is f(p,q) = G′, for party P1 and P2 using the same simulator. But two parties are not similar if the
minimum sub protocol exists in between P1 and P2. The parties P1 and P2 are having identical statements.
Let us assume there are n number of sub protocol rounds. The party P1’s view is written as

{RT min(p1,q1), RT min(p2,q2),...,RT min(pi,qi),...,RT min(pn,qn)} (4)

Here RT min describes real (original) transcript of the minimum protocol.
The simulator such as polynomial function of G′ can be used to compute each of the output of executions
of the protocol, which will be denoted as hmin

i (G′).
The computed P1’s input denoted as gmin

i (p,G′), it also computed by a polynomial function of x and G′

at each of the protocol execution. Using the minimum sub protocol simulators to generate the simulated
transcripts.

{ST min(gmin
1 (p,G′),hmin

1 (G′)),...,ST min(gmin
n (p,G′),hmin

n (G′))} (5)

Where ST min describes the Simulated Transcript of private minimum sub protocol in semi-honest model.
By using views of simulated transcripts for the minimum sub protocol we can prove the hybrid argu-
ments. We can define distribution of hybrid Hi in such a way that the first i minimum sub protocols were
simulated and the last n− i transcripts are real one. Let the value Hi(x,y) demonstrates the distribution

{ST min(gmin
1 (p,G′),hmin

1 (G′)), ...,RT min(pi+1,qi+1), ...,RT min(pn,qn)} (6)

We now have to prove H0(p,q) ≡ Hn(p,q) by demonstrating for all the i values, Hi(p,q)≡ Hi+1(p,q).
By contradiction, let us take that there is a D, denotes PPT distinguisher and pol(.) a polynomial,

such that infinite number of many n′s (p,q ∈ {0,1}n)

|Pr[D(H0(p,q)) = 1]−Pr[D(Hn(p,q)) = 1]|> 1
pol(n)

It is saying that for infinitely many number of p and q, there is an i.

|Pr[D(Hi(p,q)) = 1]−Pr[D(Hi+1(p,q)) = 1]|> 1
n pol(n)

To contradict the security mechanism of the minimum sub protocol let us use D. That the solitary dissim-
ilar between Hi(p,q) and Hi+1(p,q) is of the (i+1)th transcript of minimum according to viewλ (pi+1,qi+1)
in Hi and accordingly to Sλ (pi+1,qi+1) in Hi+1. Furthermore, given p,q,i and a view v it is possible to
construct a distribution H such that if v is taken from viewλ

1 then H = Hi(p,q) and if v is taken from Sλ
1

then H = Hi+1(p,q). It follows the infinite number of many inputs, however it is possible to distinguish
the view of P1 in real by finding minimum simulated view with the same probability. That it is pos-
sible to identify Hi(p,q) from Hi+1(p,q). However, there is a contradiction in the security of minimum
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sub-protocol. Therefore we can come to an end that H0(p,q)
c≡ Hn(p,q). We have shown that for each

execution of minimum sub protocol where input is P1’s sub protocol and output is P1’s input function and
entire MST protocol.

3.2 Privacy Preserving Minimum Spanning Tree using Prim’s (PPMSTP)

Generic Prim’s algorithm is used to find find minimum spanning tree in a given connected, weighted
single graph [5]. While using this technique it leaks supplementary additional information regarding
other edges which are adjacent to a particular vertex.

Let us take G1 = (V1,E1) be the graph of first party and G2 = (V2,E2) be the graph of second party
as two private graphs, which are having same set of vertices and same set of edges with different strictly
positive edge costs. Choose an arbitrary starting vertex must be same in both the private graphs. The
generic Prim’s algorithm is modified by taking two private graphs as input

1. for each u ∈ V[ G1 ] , ∈ V[ G2 ]

2. key[u] = ∞;

3. key[r]=0;

4. θ = V(G1) AND V(G2);

5. T = φ ;

6. while ( θ 6= φ )

7. {

8. u = Extract-Min( θ );

9. for each v ∈ Adj[u] in G1 and in G2. Parties having graph G1 and G2 compute privately the
length of the smallest edge among them.

10. w(u,v) = min(w(u,v)G1 ,w(u,v)G2)

11. if( u ∈ θ and w(u,v) ≤ key[v])

12. {

13. key[v] = w(u,v)

14. Add w(u,v) in T

15. T = T ∪ w(u,v)

16. }

17. }

18. return T
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4 Complexity Analysis

For both the algorithms that are presented here, we can determine the total number of rounds, the
total communication complexity and the computation complexity. By using the construction of Yao’s
protocol on circuits with m number of gates and n number of inputs it requires computational overhead
as O(m+n), we need O(1) computational rounds and O(n) communications.

Complexity of privacy-preserving MSTK. For the analysis of our scheme we are assuming that the
number of edges in E is n and l is the maximum edge length. Here we are considering input as length of
edges in G1 , G2 and returns output as G = PPMSTK(gmin(G1,G2). For computing gmin sub protocol it
holds O(n log l) number of gates. Therefore we can say that this approach needs rounds as O(1) and O(n
log l) communication and computational.

Our scheme complexity is depending on the total number of minimum sub protocol iterations, in
worst case it can be n+ n. This is equal to the number of various edge lengths which are appearing
in solution graph. At the stage of ith iteration we are taking the minimum number of the two integers
and constructing minimum spanning tree. This scheme requires n− 1 iterations, at each iteration the
minimum of two parties integer value is privately computed with log l bits. As we are using Yao’s
method to find the minimum, it requires circuit representation with inputs as (n+n) log l and gates as
O(log l). Both the parties are using oblivious transfers. Therefore 2 log l oblivious transfers takes place
in parallel.

We conclude the scheme which is used here will take number of rounds as constant that is O(1)
and total communication complexity is O(n+n)(log l) simplified as O(n log l) and total computational
complexity is same that is O(n log l).

Complexity of privacy-preserving MSTP. This is special case of minimum spanning tree comparing
to PPMSTK it operates on adjacent minimum edges of vertex. Here the minimum spanning tree starts
from a arbitrary starting root point identified by both private parties G1 and G2. At the time of terminating
the algorithm θ must be empty. The performance of our approach is depends on min-heap i.e, θ .

For finding the shortest root paths the Prim’s algorithm is absolutely similar to the Dijkstra’s algo-
rithm by considering the weights of edges as priorities rather than distances to source). It is every time
connected because it the representation of the tree. We conclude that our scheme will take a constant
number of rounds as O(v) here v is number of vertices must be same in both the private parties, total
number of oblivious transfers are O(v (log v + log l)) and total number of gates are O(v (log v + log e))
where l is length of the edge and e is set of edges.

5 Conclusions

We have presented privacy-preserving protocols in semi-honest model that describes two private parties
to compute PPMSTK and PPMSTP on their private graphs. We proved that our protocols preserves
privacy in semi-honest model. The future research is the same problem can be constructed using privacy-
preserving protocols in malicious adversary model.
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