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Abstract

The Internet of Things (IoT) platform consists of numerous IoT devices and a small number of
servers. In order for the platform to operate efficiently and reliably, servers need to have complete
control over many IoT devices. The advantage of using network boot in this environment is that
the server has control over the device’s boot process. When applying network boot on an IoT plat-
form, the server needs to be able to handle the network boot that many IoT devices request. If the
server does not have enough processing power for the network boot request, IoT device boot would
be delayed. In this paper, we propose a resource-efficient network boot to solve this problem. The
proposed framework has three mechanism. First, the server reserves the right to control which sys-
tem image to transfer during the network boot process on the platform. Second, the server applies
deduplication to the system image to minimize the amount of data required for transmission. Third,
the server monitors network boot requests and performs file transfers appropriate to the situation,
minimizing time spent on transfers. The proposed system allows the server to efficiently control nu-
merous IoT devices when using network boot on the IoT platform.
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1 Introduction

According to Gartner, more than 20 billion devices will be connected to the Internet by 2020 [5]. Already
an infrastructure consisting of many IoT devices, such as smart homes, smart buildings, and smart cities
is deployed worldwide. IoT devices feature low cost and low power, so IoT devices have lower specifi-
cations than regular systems. Despite these limitations, we want to apply a network boot to get the most
out of the efficiency of IoT devices. Network booting uses a network file server to boot a system instead
of the local disk drive. Network booting can reduce production costs by reducing the local disk drive ca-
pacity required for each device. In addition, building such an infrastructure facilitates the deployment of
different operating systems across the network. Every time a device is booted, the operating system can
be easily changed to reduce the operating costs by allowing one device to be used for multiple purposes.
Because of these advantages, network booting is widely employed in educational environments. We want
to apply the benefits of network booting to the IoT infrastructure to flexibly change the operating system
of IoT devices to leverage their efficiency fully. In addition, the flexible and versatile use of each device
can reduce infrastructure operating costs and improve the utility of the infrastructure.

There are some issues involved in applying network booting to the IoT infrastructure. First, network
booting is driven by the device. The device explicitly requests the server for the required system image.
This mechanism makes it difficult for the server to control the booting of the device. The passiveness of
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Figure 1: Three Main Mechanisms of RE-NETBOOT

the server increases the difficulty of dynamically control system images as more IoT devices are operated.
Second, an infrastructure with network booting will have more network traffic than one without it. The
process of deploying a system image via the network increases traffic across the entire infrastructure. In-
creased network traffic may make the system more prone to the disadvantages of network booting. As the
number of IoT devices in operation increases, the network traffic required to supply system images will
surge, possibly exceeding the available bandwidth. Finally, in an infrastructure with many IoT devices,
network booting requests may occur more frequently than in smaller infrastructures. This increases the
proportion of server resources that are consumed by handling network booting requests. As the number
of IoT devices in operation increases, a centralized control method for controlling the system images
will hinder scalability. In addition, delays in response to network boot requests can cause delays in the
operation of the infrastructure, which can lead to infrastructure paralysis.

To solve such concerns, we propose RE-NETBOOT, resource-efficient network boot. RE-NETBOOT
consists of three main mechanisms as shown in Figure 1. First, the device does not explicitly request a
system image. The server deploys a system image in response to network boot requests from devices
based on an infrastructure operations plan. The device sends its device serial number (SN) to the server.
The server verifies the identity of the device and sends a system image to boot the device according to
the operations plan. This means that the server is centrally controlled for all the devices. Second, the file
distribution is enhanced by deduplicated system images that remove redundancies in the system image
blocks that comprise the system image, minimizing network traffic during system image deployment.
The server sends a deduplicated system image block in response to the network boot request, and the
device recovers the original system image. Our insight is that there is redundancy in data generated on
the same base. Many operating systems used for IoT devices are based on Linux, which contains such
redundancies. To accomplish deduplication, we designed an indexed file format and file transfer protocol
for file recovery. we design the Index File format to recover a deduplicated system image. Third, the
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server monitors network boot requests in real-time and dynamically changes the way files are distributed,
minimizing the time to complete system image deployment for requests. By default, file distribution is
handled as a unicast transmission. However, when network boot requests are concentrated to a certain
degree, file distribution is handled as a broadcast transmission. We also determine the order in which the
system image blocks are sent when broadcasting them, minimizing the average deployment completion
time, which in turn minimizes the time it takes to deploy the system image in response to network boot
requests. The contributions of this work are as follows: First, even with more IoT devices in operation,
the server can dynamically change the system image for every device it controls. Second, we combine
deduplication with network booting to minimize network traffic for system image deployment. Third, the
proposed framework can minimize the response time dynamically according to the network boot request
situation.

The remainder of this paper is as follows. Section 2 introduces related works, and Section 3 describes
the proposed framework. In Section 4, we describe a testbed construction for future experiments, and
conclusions are made in Section 5.

2 Related Work

2.1 Network Booting

Network booting boots a remote system using a network file server instead of a local disk drive and is
typically used in diskless systems without local storage. These systems use the preboot execution envi-
ronment (PXE) to receive an internet protocol (IP) address from a dynamic host configuration (DHCP)
server and then receive the files to boot the system. The typical protocol used for file transfer at network
booting is TFTP. TFTP is designed with minimal functionality to perform file transfers with very little
memory [12]. In addition to TFTP, iPXE, an enhanced, open standard for network booting, also supports
HTTPS-based file distribution [7]. In this paper, we propose a design based on TFTP that minimizes the
memory footprint to support network booting for the IoT, which is comprised of many low power and
low specification devices.

TFTP was first proposed as a unicast transmission method. To address the bottleneck that occurs
when multiple devices request files from a single image server, the multicast option [2] was added, and
a format that supports broadcast transmissions [1] has also been proposed. In addition, previous works
have proposed a file distribution method using the peer-to-peer method [11, 13], which provides a solu-
tion to bottlenecks by handling file transfers for a single type of file. However, it does not cover various
types of boot file transfers. In this paper, we designed RE-NETBOOT to overcome the bottleneck that
can occur when various devices request different kinds of boot files.

2.2 Data Deduplication

Data Deduplication is a technique that compresses data by eliminating redundant areas of a dataset.
Deduplication reduces the data footprint by removing data duplication in or between files. Deduplication
is primarily used for backup storage [9] because it backs up only the parts that have changed stores the
parts that have not changed. This approach extends the capacity of the network by reducing the network
traffic incurred when file contents between distributed file system clients and servers are synchronized
[4, 10] .

There are two classes of data deduplication that operate at different data levels [3]: block-level
deduplication and file-level deduplication. This white paper focuses on block-level deduplication to
eliminate redundancy between multiple operating system files stored on network file servers.

The data deduplication process is as follows: First, deduplication algorithms divide the data into
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chunks. The chunk sizes used to divide the data include fixed- and variable-length chunks [8]. The fixed-
length chunk method divides a file into fixed-length blocks, while variable-length chunks are different
sizes that divide the file into blocks. Deduplication then computes a hash value for each chunk and
compares these hashes to find matching chunks or compare chunk values directly. We used a fixed-
length chunk approach in which the chunk length was set equal to the size of the data block used by the
file transfer protocol for compatibility.

3 Design of Resource-Efficient Network Boot for IoT Platform

The proposed framework has four phases and one file deployment protocol, as shown in Figure 2. The
Registration phase is the registration process between the device and the server. This process allows
the server to provide the device serial number to the device. This process initiates the device within
the proposed operations framework. The File-Deduplication phase removes redundancies between the
system images stored in the server. Master Plan Control Phase is the process of planning and controlling
the system images that are used for booting devices controlled by the server. The Master Plan Control
allows the server to determine which system image to deploy to each device at the current time. The
Resource-Efficient File-Deployment Phase is a process for determining how to respond to network boot
requests from devices. The Request Queue Monitoring within this phase monitors the frequency of
network boot requests and determines how system images are deployed based on the situation. There
are two system image deployment methods: unicast and broadcast. When using broadcast transmission,
the Block-Deployment Scheduling algorithm determines the deployment order for deduplicated system
image blocks. This aim of this algorithm is to minimize the average time spent downloading system
images across all devices.

The File Deployment protocol consists of a request and response phase. In the request phase, the
device requests a network boot from the server. In the response phase, the server deploys the system
image by either unicast or broadcast transmission, as determined by the Request Queue Monitoring.

The File-Recovery Algorithm is on the device side and recovers the deduplicated system image
blocks to the original system image. The device boots from the system image recovered during this
process. This algorithm is described in more detail below.

Figure 2: RE-NETBOOT Overall Operation Flow Chart
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Figure 3: System Images Deduplication output

3.1 Registration Phase

This phase is the process of registering the device with the server for network boot. The server generates
a unique Device SN for the device, passes it to the device, and the device stores it. The server manages
the list of devices controlled by the server by storing the created Device SN in the device list repository.
The Device SN is used when a device asks the server for a network boot, allowing the server to identify
the device and distribute a system image.

3.2 File-Deduplication Phase

This phase directs the removal of redundancies from system images stored on the server. The system
image is divided into fixed-length chunks and deduplicated based on the system image blocks. Data
deduplication is a technique that requires extensive computation and resources, which can slow server
performance. However, the proposed framework does not include the deduplication process in the net-
work boot request and response process. As a result, the deduplication process is independent of the
network boot process, so the performance impact to the network boot process is small.

In the proposed framework, the chunk size for dividing system images is designed to match the data
transfer size of the file transfer protocol. This design sends one system image block to one data block.
Because the proposed framework is designed based on TFTP, the system image block size is set to 512
bytes. Two types of data are generated by removing redundancies from the system images, as shown in
Figure 3. A unique dataset is assigned a unique value that designates the system image block after it has
undergone deduplication. All system images stored on the server are compressed into a unique dataset.
The Index File is used to recover the original system image based on the system image block. Index files
are divided into headers and metadata, as shown in Figure 4.

3.3 Master Plan Control Phase

This phase prepares a system image for deployment to devices based on the infrastructure operations
plan. The master plan is a schedule of operating system usage for each device over time. Based on the
master plan, the server determines which system image to send in response to a specific device request
for a network boot. The server consults the plan of each device and copies the system image(s) needed
to boot the device into the TFTP directory. The device SN is added to the file name during the copy
process. This allows the server to determine which system image the device will use by device SN when
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Figure 4: Index File Structure

requesting a network boot. The copied system image is determined according to the master plan. This
phase allows the server to dynamically change the system image that is distributed to a device.

3.4 Resource-Efficient File-Deployment Phase

This phase is a process in which the response to the actual network boot request is performed. This phase
consists of two sub-processes. The first process is Request Queue Monitoring, which monitors network
boot requests and uses them to determine how the server should deploy the files. By default, the server
uses unicast transmission to send system images in response to network boot requests. However, if the
number of simultaneous network boot requests is large, responding by unicast transmission will take
time. In such situations, we designed the Request Queue Monitoring to switch the server response to
broadcast transmission. The second process is Block-Deployment Scheduling, which is active when files
are being deployed by broadcast transmission. When the server deploys system images by broadcast,
it sends system image blocks to multiple devices at once. In this case, the time required to recover the
system image depends on the deployment order of each system image block. If a device needs the last
system image block, the system image cannot be recovered until the deployment of the last system image
block is complete. We designed the Block-Deployment Scheduling algorithm to minimize the average
time spent restoring all system images during broadcast transmission. Both processes are designed to
spend the least amount of time distributing files in response to network boot requests. This is explained
in more detail below.

3.4.1 Request Queue Monitoring

The proposed framework places a lightweight gateway on the server side to process through the queue for
network boot requests. The Request Queue Monitoring determines how files are deployed by measuring
the frequency at which network booting requests are entering the queue. By default, the response to net-
work boot requests is unicast transmission. If a new request comes in before the server responds, queued
requests will gradually accumulate. In such situations, the server switches to broadcast transmission to
respond to the device requests. Each response method is shown in Figure 5.
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Figure 5: System Image Deployment with Unicast and Broadcast

3.4.2 Block-Deployment Scheduling

This algorithm determines the order in which system image blocks are sent in response with a broadcast
transmission. The goal of this scheduling is to minimize the average time spent restoring all system
images by scheduling the deployment order of system image blocks. We propose two techniques for this
as shown in Figure 6. The two scheduling techniques are identical in that the same system image block
is not placed more than once.

The first technique is smallest-file-first (SFF) scheduling. This scheduling places the smallest system
image first. The system image size is measured after deduplication within one system image. The size is
also based on the number of system image blocks. In the case of SFF, the smallest system image is sent
first, an approach which is like the shortest-job-first (SJF) scheduling in CPU scheduling.

The second technique is minimum-extra-first (MEF) scheduling. This scheduling places the system

Figure 6: Block-Deployment Scheduling using Smallest-File-First (SFF) and Minimum-Extra-First
(MEF)
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Figure 7: Example of Matching between Data Block Sequence and Index Offset

image with the least extra blocks first. Extra blocks are blocks that do not duplicate one system image
with another. Fewer extra blocks for certain system images means that the system image has a lot of
redundancy. In MEF scheduling, during a series of system image deployments, previously deployed
system images contain most of the system image blocks of the new system image. Therefore, the system
image that is sent first with MEF can be larger than that sent first with SFF, but the number of system
image blocks for deploying the subsequent system images is smaller.

Once the order of block distribution is determined by scheduling, the Index File must be recon-
structed. First, the Device SN that will use the system image is recorded in the Device List File of the
Index File. Also, the Index Offset and Block Deployment order of the metadata must match, as shown in
Figure 7. The block deployment sequence becomes the data sequence number of the file transfer proto-
col. The Index File records which devices will recover which system image blocks that are distributed in
a series. Based on this, the device uses a file-recovery algorithm to recover the system image for booting.

3.5 File-Deployment Protocol

There are two major file transfer protocols. This is a request process in which the device makes a network
boot request to the server and a process is initiated that results in the server responding to the request.
The device replies with a Read Request including its Device SN to server. The device records and sends
its Device SN instead of the file name requested in the “FileName” field of the TFTP Read Request. The
original TFTP server sends the file corresponding to the “FileName” of the Read Request to the device.
However, the proposed server-side framework selects and distributes files set through the Master Plan
Control Phase based on the Device SN.

Responses from the server are subdivided into unicast and broadcast methods, the choice of which
depends on the file distribution method determined by the Request Queue Monitoring. Unicast is the
same as the traditional TFTP unicast response. In the case of broadcast responses, there are three phases
of file distribution. We perform file distribution based on the Intel TFTP Subnet Broadcast [6], as shown
in Figure 8. The first is the Negotiation Phase for distribution by broadcast. In this process, the server
selects the broadcast port and master device to distribute the file. The master device performs the ac-
knowledgment (ACK) according to the data transmission of the server, and other devices do not perform
the ACK according to the data transmission of the server. The Index Deployment Phase deploys in-
dex files. For each Index File distributed, the device checks whether its Device SN is included in the
Device List Field, and if so, the device saves the corresponding Index File. In the Block-Deployment
Phase, system image blocks are transferred according to the block deployment order determined by the
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Figure 8: File-Deployment Protocol with Broadcast

Block-Deployment Scheduling algorithm.

3.6 File-Recovery Algorithm

This algorithm is used to recover the system image for booting as shown in Algorithm 1. The Index
Offset of the Index File refers to the sequence number of the TFTP Data, and the algorithm places the data
corresponding to that sequence number in the specified location. This action restores the deduplicated
system image to the original system image and uses it to boot the device.

4 Testbed Construction

This section describes how to build a testbed. We plan to build an infrastructure of multiple embedded
devices for this experiment. The server implements a module for each proposed phase. We connect
multiple embedded devices and servers. We then generate a situation where the embedded devices con-
stantly send network boot requests. Based on this testbed, we compare the proposed framework with
network booting based on conventional TFTP. The framework measures the performance of scheduling
techniques based on compression ratios for the deduplication and server-side overhead that occur during
file distribution. On the device side, the framework measures the additional overhead incurred during
the boot process. Based on this testing approach, we plan to improve the performance of the proposed
framework.
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Algorithm 1: File-Recovery Algorithm
input: Index File , File Transfer Data Block

1 begin
2 SysImg← Open Empty File;
3 IdxFile← Open Index File;
4 while Receive Data Block do
5 if DataSequenceNumber ∈ IdxFile.IndexO f f set then
6 Fill SysImg;
7 end
8 end
9 Get Hash Value in Index File;

10 HV← Hash(sysImg);
11 if HashValue == HV then
12 DO BOOT;
13 else
14 DO BOOT Halt;
15 end
16 end

5 Conclusion

To improve network booting, we propose RE-NETBOOT, resource-efficient network boot with a dedu-
plication. In the proposed RE-NETBOOT, when multiple devices simultaneously request a network boot,
the server removes redundancy, passing a split file to the device, and each device reassembles the boot
file. The file distribution method can be changed based on the frequency of network boot requests to
minimize response completion rates. A file distribution method is adopted that accelerates the response
time by switching between unicast and broadcast according to the number of boot requests in the queue.
In addition, when using broadcast transmission, a scheduling algorithm determines the order of deploy-
ment for system image blocks, minimizing the time it takes for a system image to be distributed to all
devices. This can accelerate processing for network booting that happens in large clusters. This paper
used the default method to eliminate redundancy in boot files. Future work will design a deduplication
algorithm that is optimized for boot file redundancy. We also plan to address security issues using TFTP.
We expect the proposed RE-NETBOOT to be used for efficient infrastructure management via network
booting in an infrastructure consisting of numerous IoT devices.
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