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Abstract

Malicious applications, especially in mobile devices, constitute a serious threats to user data. Due
to the openness, Android have become the most popular smart phone operating system in mobile
market. Although fast and straightforward, Static analysis approach has many difficulties to detect
stealthy malware. In this paper, we propose a behavior signature-based to classify whether malware
or not. To achieve this, we first hook a number of sensitive APIs to collect all possible invocations
of the app. We then extract the behaviors of malicious applications by comparing their flows and the
value of parameters and results of each called APIs. In our study, we extracted behavior signatures
from malware in each family. Our works help to improve the quality of analysis compared with static
analysis-only approaches.
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1 Introduction

Malware have become very popular in Android platform. According to IDC report[13], Android OS
accounts for 85.9% in the mobile market share 2019. Therefore, Android OS also the first attacker’s
target. As shown in statista.com, the total number of Android malware detection amounted to over 26.6
million programs[6].

Due to the platform nature for mobile devices, malware in Android follow these main types: Adware,
Ransomware and Spyware. Adware is the most common and popular android malware that a smartphone
gets infected with[16]. This kind of malware try to run as many as possible advertisements on the infected
phone. You will receive continuous popups and ads on your screen. Also, another malicious or unwanted
applications will be downloaded whenever the ads are clicked. Ransomware try to make problem to the
smartphone such as change settings or lock personal data. Similar to computer malware, Ransomware
demand the users that they have to pay the money to unlock their devices. Spyware on your Android can
monitor, record and send all your information to the attackers. It may steal all the data stored in your
device.

So far, many solutions have been proposed for android malware detection. These works are con-
ducted as either static or dynamic analysis or their combination[15]. Static analysis techniques identify
as much as possible the workflows of the application (e.g. FlowDroid[3]) through source code to figure
out suspicious behaviors. On the other hand, dynamic analysis identifies the workflow by executing the
application in an emulator or real device to detect any malicious behavior. Each of them has their own
pros and cons. Static analysis works by just disassembling the APK without actually running it, therefore
it does not infect the device[9]. This approach is undermined by the use of various code transformation
techniques (i.e. string encryption, using reflection APIs). Dynamic analysis passes against the encrypted,
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polymorphic and code transformed malware, but it is not quick as static approach. A serious drawback
of dynamic approach is that some malicious execution path may get missed, if it is triggered according
to some non-trivial event[9].

In this paper, we propose a novel approach for detecting whether Android malware using dynamic
analysis. We use hooking technique from Frida[2] to extract the behavior flow of an application without
modifying APK source. After that, we conduct a behavior signature-based analysis to detect malicious
app. We then classify the malware into their families.

Our contributions can be described as follows:

1. We propose a new approach to get the dynamic flow of an application. This makes the tracking
work in dynamic analysis easier than other works.

2. We design a framework named BeeDroid which performs dynamic analysis with low cost of over-
head. This framework aims to extract behavior signature of each malware family in order to
support the detection system.

The rest of this paper is organized as follows: Section 2 provides an introduction about Frida instrumen-
tation toolkit. This section also provides and discusses related works and their limitations. Section 3
describes our BeeDroid design and approach. Section 4 shows the limitation of our approach and dis-
cussion about some solutions for these problems. Section 5 summarizes the contribution with conclusion
and scope of our future works.

2 Background and related works

Android framework provide developer many useful APIs to interact with the resources. Most of Android
malicious behavior is trying to access the data or capabilities of the devices. Thus, to gather the infor-
mation about an application’s suspicious activities we need to track when and where the sensitive API is
called.

Frida is a dynamic code instrumentation toolkit. It lets you inject snippets of JavaScript or your own
library into native apps on Windows, macOS, GNU/Linux, iOS, Android[2]. With Frida, we can easily
hook in any application run-time without any modification. In the other side, Frida has its own binding
client in python and other scripting language which allow you to build your own automatic tool.

Mariconti et al. [14] proposed to build Markow Chains of behavioral model of a malicious malware
with Soot[17] and Flowdroid [3] before analysis this behavior graph. Gilbert et al. [10] proposed Ap-
pInspector which can extract explicit and implicit flow by focusing on the return value of sensitive APIs.
However, an application using sensitive data does not necessarily correspond to malware[5]. In this case,
it is difficult to extract exactly the flow of what malware do because of obfuscation or others evasion
techniques.

Most of current dynamic-based analysis techniques is trying to extract the sensitive information flow
by executing the application and detecting anomaly behaviors. RunDroid[19] takes the source code of an
application as input, instruments the source code and then intercepts the executions of the instrumented
application to analyse message objects as set of log files. AndroTaint[15] represents an automatic tagging
technique using DDI hooking which replace arbitrary methods in Dalvik code with native function call
using JNI[7]. TaintDroid[8] builds their own system similar with android system by modifying the Dalvik
VM Interpreter to marking all taint tags. By doing this way, their system extracts many unnecessary logs
and spends the high cost in implementation work. In our work, the hooking becomes more efficient
because it does not modify an application before its execution.

Many extraction data log solutions have been proposed. Xiao et al. [18] proposed AROW, a system
call tracking tools using strace. Lin et al.[12] adopted the thread-grained system call sequences to identify
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the malicious repackaged applications. Blokin et al.[4] proposed a method that incorporates sequence
information into the features it uses to perform similarity analysis. Isohara et al.[11] proposed a kernel-
based behavior analysis for Android malware inspection. These approaches have the limitation that their
logs are too huge, and it may cause overhead when analysing them.

3 BeeDroid system design

To minimize the amount of API hooking workload of dynamic analysis, we design a framework named
BeeDroid. The operation of BeeDroid goes through 3 phases, as depicted in Figure 1. First, we extract
the flow named call-flows while malicious application runs. Then we compare all flow logs of each
malware family to extract behavior signature of this family. Finally, we use the behavior signature to
detect malicious application in Malware detection phase.

Figure 1: BeeDroid workflow overview

Figure 2: Hooking model

3.1 Flow extraction

We focus on monitoring the flow to sensitive APIs which are used to support application accessing to the
resources of android device. These APIs existing in malware often incur unusual behaviors.
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3.1.1 Hooking

The hooking system has two components: client side and server side. Client side works as an automation
tool in order to automatically install malicious application in server side and retrieve analysis data. As
shown in Figure 2, the workflow of hooking has these steps:

1. Client sends a request to start Frida-server.

2. Client installs malware APK using adb command.

3. Client sends a request to start the malware.

4. Server starts malware app and response process information to client.

5. Client sends hooking script.

6. Frida-server instruments the hooking script into the memory of targeted application then send back
the hooking logs to client.

7. Client receives analysis log from server.

3.1.2 Flow logs collection

getStackTrace() is a powerful method to get the tracing flow (from source to sink) at any where this
method is call. Figure 3 shows the stack trace log if an error occurs at SmsManager.getSubcriptionId
API. Base on the log, we easily collect the source (html.app.o.doPayment) to the sink (getSubscrip-
tionId) without any complex algorithms. Thus, we instrument the hooked API at runtime to add a call to
getStackTrace() before return the results of instrumentation API. Then we collect the stack trace logs as
the taint flow for the sensitive API when it’s called.

Figure 3: Stack trace log at SmsManager.getSubscriptionId

Both benign apps and malware apps use sensitive APIs, one is for legitimate reason and the other is
not. Some APIs are used in the same way between malware and benign apps, so the taint flows are similar.
For example, putExtra API adds extended data to the intent. This API is used to transfer data between
activities or services. Both benign app use putExtra() to share data locally in application. Malware app
use putExtra() as the means to call an implicit activity. As shown in Figure 4, Backdoor.AndroRAT.1 try
to connect to a Command and Control server (C&C) “fatalxerror007.no-ip.biz”.

In this paper, we designate call-flow of an application is the set of Caller, Callee, Param values and
Return value. Caller is a correctly ordering set of methods for expressing call functions to sensitive APIs.
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Figure 4: putExtra() in malware source code

In our work, we do not consider the APIs in Android framework layer. Callee is the sensitive APIs that
we consider in this behavior. Params value is a dictionary of type of parameter and its value which is the
input of Callee. Return value is the output of Callee after doing the action.

3.2 Behavior extraction

An application has many call-flows followed by order. Each call-flow is shown in one line of log file
after Flow extraction. As shown in Figure 6, line 1 is a call-flow that represent the behavior from onSms-
ButtonClick() raised to File.exists() API. Note that, not all call-flows represent for malicious behaviors.
In this process, we try to extract the behavior signature of a malware family.

In a malware family, apps usually have different activities, functions and behaviors. However, they
usually aim at the same goal (sink). For example, a malware belong to AndroRAT[1] family always
connects to a C&C server in an implicit way by silently starting new activity with IP address and Port
number of C&C server added earlier using putExtra() API. In this paper, a set of call-flows that almost
all malware in a family have is called behavior signature. In simple malware families, their behaviors are
just a sequence of call-flows. However, complicated malware families have additional junk-behaviors
between their malicious call-flows.

Considering the behavior of an entity is not only assessing the number of actions but also evaluating
the order in which these actions are performed. Hence, to get the most accurate view of the behavior of
a malicious app, we should consider the correlation of their call-flows.

The first step of our method is generating Callee vector of each malware behavior. Then we extract
the Callee matching blocks of all malware behavior in the family. Note that Callee must be exactly match
because API name is pre-defined by Android SDK and represents a specific function. After getting
Callee matching blocks, we consider about the similarity of Caller, Param values and Return value.
These part of call-flow no need to be exactly match. For example, Erop family try to send SMS to
premium number for money. Each Erop malware have different list of premium number. Thus they
pass different parameter value to sendMessage() API, but still have the similarity between them such as
length of premium number. In our work, we use difflib implemented by python to calculate the similar
ratio of Caller, Param values and Return value between each malware in the family. If the ratio exceeds
a threshold θ we accept this call-flow and append it into behavior signature. The method to extract
behavior signature is described in detail in Algorithm 1.

The get matching block() method, which implemented by python, returns a list of matching block.
Each match describes matching subsequences as a form (a, b, size) with a, b is starting index of object
rootsig and familyls[i] and n represents the length of matching block. The Similar() method using difflib
(a python library) to calculate the ratio of similarity between two lists or strings in sequence correlation.

1 familyls = all_apks_call_flows

2 rootsig = familyls [0]

3 for i=1 to len(familyls) do

4 matches = SequenceMatcher(rootsig.CalleeVector ,

5 familyls[i]. CalleeVector).get_matching_block ()

6 tmp = []
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7 for match in matches do

8 flowsA = rootsig[match.a:match.a + match.size]

9 flowsB = familyls[i][match.b:match.b + match.size]

10 matchCaller = similar(flowsA.Caller , flowsB.Caller)

11 matchParam = similar(flowsA.Param , flowsB.Param)

12 matchRes = similar(flowsA.Ret , flowsB.Ret)

13 if (matchCaller > CallerThreshold and

14 matchParam > ParamThreshold and

15 matchRet > RetThreshold) do

16 tmp.append(match)

17 end for

18 if(len(tmp) >1)

19 rootsig = tmp

20 end for

21 Behavior_Signature = rootsig

Listing 1: Algorithm 1 - Procedure for the behavior signature extraction

3.3 Malware detection

Base on the behavior signatures that extracted by Behavior detection phase, we compare the call-flows
of unknown Android application with all the signature we have. The detail for this phase is show as
Algorithm 2.

We do the same way to extract the matching block between the behavior of unknown app and each
family behavior signature. BY asserting the malware database, we came up with the optimal α value of
0.87

1 signatures = all_families_behavior_signature

2 testFlows = all_callflows_of_unknown_apk

3 for i=0 to len(signatures) do

4 matches = SequenceMatcher(testFlows.CalleeVector ,

5 signatures[i]. CalleeVector).get_matching_block ()

6 tmp[]

7 for match in matches do

8 flowsA = testFlows[match.a:match.a + match.size]

9 flowsB = signatures[i][match.b:match.b + match.size]

10 matchCaller = similar(flowsA.Caller , flowsB.Caller)

11 matchParam = similar(flowsA.Param , flowsB.Param)

12 matchRes = similar(flowsA.Ret , flowsB.Ret)

13 if (matchCaller > CallerThreshold and

14 matchParam > ParamThreshold and

15 matchRet > RetThreshold) do

16 tmp.append(match)

17 end for

18 testFlows = tmp

19 ratio = similar(testFlows ,signatures[i])

20 if (ratio > α) do

21 alert("Malware detected!")

22 end for

Listing 2: Algorithm 2 - Procedure for malware detection
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4 Limitation and discussion

While conducting BeeDroid to construct call-flow behaviors, we observe some limitations of this tool.
First, if the environment is a well-known emulator, malware apps which have anti-debug, anti-emulator
techniques may refuse to run. This problem can be solved by using customized emulator which fakes
device information. Second, Frida-server process can be easily detected. However, we can rebuild Frida-
server with another name and bind it to another port number. Finally, some sensitive APIs that interact
with same resource have different names and even different ways to use (e.g. parameters). But these APIs
account for a small percentage in SDK sensitive APIs. In other words, in a malware family, malicious
apps use the same APIs. If we divide the malware in the family as detail as possible, it will be easier to
apply our techniques.

5 Conclusion

In this paper, we have proposed a framework to construct Android malware behaviors and define their
signatures for further analyses. BeeDroid is a novel approach that reduces the overhead for analysis
process while avoiding sacrificing analysis data. For future work, we will try to improve our framework
to make the similarity calculation more precise. However, preparing for the analysis environment as like
real phone as possible and equip more functionalities to our analysis environment to trigger more evasive
apps.
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